Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Enhancing Anticancer Activity Through Computer Modeling

By LabMedica International staff writers
Posted on 27 May 2009
Cancer immunologists used a computer modeling system to predict and manipulate the cancer fighting ability of populations of tumor-infiltrating lymphocytes isolated from metastatic melanoma patients.

Tumor-infiltrating lymphocytes (TILs) are heterogeneous cell populations that form an interconnected network that determines their collective reactivity against tumors. TILs are used in adoptive cell transfer therapy, where they are removed from a metastatic melanoma patient's tumor and evaluated for their antitumor activity. TILs that show the strongest antitumor response are expanded and then reinjected back into the patient.

In the current study investigators at the Technion-Israel Institute of Technology (Haifa, Israel) sought to understand why some TILs possessed more potent anticancer potential than others. To this end they used flow cytometry measurements to establish the characteristics of the immune cells within 91 TILs removed from 27 metastatic melanoma patients. Results of this study showed that each TIL comprised several different subpopulations of immune cells, with each subpopulation distinguished by a particular set of chemical markers on the cell surfaces. This data enabled the investigators to develop a system of computational modeling that established a set of rules to predict which TILs would show the most antitumor activity based on their particular combination of subpopulations.

Information obtained from the modeling system enabled the investigators to prepare TILs that were particularly potent or particularly inactive. Results published in the April 28, 2009, online edition of the journal Molecular Systems Biology revealed that in 12 nonreactive TILs taken from four patients, the investigators were able to induce a 106-fold increase in TIL antitumor activity by expanding an optimal blend of subpopulations within the TIL.

"The computational tools we developed allowed us to predict whether a TIL culture will respond to the tumor with an accuracy of more than 90%," said senior author Dr. Yoram Reiter, professor of biology at the Technion. "This enabled us to turn nonreactive TILs into reactive ones and vice versa. We need to expand the samples that we have tested from more patients, followed by more examples on TIL cultures that can be transformed from nonreactive to reactive."

Related Links:
Technion-Israel Institute of Technology



New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Auto Clinical Chemistry Analyzer
cobas c 703
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.