Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomechanical Ratchet Traps Cancer Cells Before They Can Spread

By LabMedica International staff writers
Posted on 29 Jun 2009
Researchers have demonstrated the possibility of using a biomechanical ratchet to sort normal and cancerous cells as a means to trap tumor cells before they spread to other areas of the body.

In several important physiologic processes, particularly cancer metastasis, randomly moving cells can acquire a directional motility phenotype and bias their motions in response to environmental cues. Researchers still do not understand why cells migrate in a specific direction.

In the current study, researchers from Northwestern University (Evanston, IL, USA) incorporated molecular cues (cell-adhesive and cell-repellant chemical compounds) into a "microgeometry” substrate that was keyed to the difference in shape between normal epithelial (long and thin with long protrusions on the ends) and cancer (round and broad) cells.

The microscopic ratchets contained channels with "spikes” protruding at 45o angles from the walls, alternating on opposite sides of the channel. This pattern funneled cancer cells in one direction while at the same time directing the normal cells in the opposite direction, as those cells could attach to the spikes and pull themselves through the channel. The cancer cells could be channeled into a closed chamber from which they could not escape.

The feasibility of the system was tested using melanoma, breast cancer, and normal cells, and the results were reported in the June 14, 2009, online edition of the journal Nature Physics.

"We have demonstrated a principle that offers an unconventional way to fight metastasis, a very different approach from other methods, such as chemotherapy,” said senior author Dr. Bartosz Grzybowski, associate professor of chemical and biological engineering at Northwestern University. "These are fundamental studies so the method needs to be optimized, but the idea has promise for a new approach to cancer therapy.”

Related Links:

Northwestern University



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.