We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




At Least Twenty Genes Regulate Cellular Cholesterol Metabolism

By LabMedica International staff writers
Posted on 16 Jul 2009
Print article
Maintaining the proper level of cholesterol is critical to avoiding vascular lipid deposits that are the prelude to heart disease. To manage this task cells utilize a panel of at least 20 enzymes.

To study how cells maintain their cholesterol balance at the molecular level investigators at the University of Heidelberg (Germany) first used genome-wide gene-expression profiling of sterol-depleted cells and systematic literature queries to identify candidate genes. To further refine the list of candidate genes they developed two microscopic assays that allowed them to observe how blocking individual genes with siRNA (small interfering RNA) affected cholesterol metabolism. One assay used the cholesterol-binding dye Filipin to visualize cellular cholesterol levels, while the other employed fluorescence-labeled LDL (low density lipoprotein) to show cellular internalization.

Results published in the July 8, 2009, issue of the journal Cell Metabolism revealed that 20 genes acted as functional regulators of cellular cholesterol homeostasis. Of these, the TMEM97 gene was identified as an SREBP (sterol regulatory element binding protein) target gene that under sterol-depleted conditions localized to lysosomal compartments and bound to the LDL cholesterol transport-regulating protein Niemann-Pick C1 (NPC1).

SREBPs are transcription factors that bind to the sterol regulatory element DNA sequence TCACNCCAC. When not activated, SREBPs are attached to the nuclear envelope and endoplasmic reticulum membranes. In cells with low levels of sterols, SREBPs are cleaved to a water-soluble N-terminal domain that migrates to the nucleus. These activated SREBPs then bind to specific sterol regulatory element DNA sequences and up regulate the synthesis of enzymes involved in sterol biosynthesis. Sterols in turn inhibit the cleavage of SREBPs, and therefore synthesis of additional sterols is reduced through a negative feed back loop.

"High cholesterol in the blood is considered to be responsible for excess cardiovascular morbidity and mortality," said Dr. Heiko Runz, professor of human genetics at the University of Heidelberg. "Blood cholesterol levels are controlled by cholesterol in cells. Therefore, some of the genes identified by us as regulators of cellular cholesterol in future studies might turn out to be disease genes that contribute to hypercholesterolemia in some cases. Moreover, the strategy we used could open a new avenue to identify risk factors for cardiovascular disease."

Related Links:

University of Heidelberg



Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
H.pylori Test
Humasis H.pylori Card
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.