We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Exploring Microscopic Structures Using Holographic Video

By LabMedica International staff writers
Posted on 04 Aug 2009
Print article
Image: Colored transmission electron micrograph (TEM) of lipid droplets in a developing fat cell (Photo courtesy of Steve Gschmeissner / SPL).
Image: Colored transmission electron micrograph (TEM) of lipid droplets in a developing fat cell (Photo courtesy of Steve Gschmeissner / SPL).
Physicists have developed a technique to record three-dimensional (3D) movies of microscopic systems, such as biologic molecules, through holographic video. The study has potential to improve medical diagnostics and drug discovery.

The technique, developed in the laboratory of New York University (NYU; NY, USA) physics professor David Grier, comprises two components: making and recording the images of microscopic systems and then analyzing these images. To generate and record images, the researchers created a holographic microscope, which is based on a traditional light microscope. However, instead of relying on an incandescent illuminator, which conventional microscopes employ, the holographic microscope uses a collimated laser beam that consists of a series of parallel rays of light and similar to a laser pointer.

When an object is placed into path of the microscope's beam, the object scatters some of the beam's light into a complex diffraction pattern. The scattered light overlaps with the original beam to create an interference pattern reminiscent of overlapping ripples in a pool of water. The microscope then magnifies the resulting pattern of light and dark and records it with a conventional digital video recorder (DVR). Each snapshot in the resulting video stream is a hologram of the original object. Unlike a conventional photograph, each holographic snapshot stores data about the three-dimensional structure and composition of the object that created the scattered light field.

The recorded holograms appear as a pattern of concentric light and dark rings. This resulting pattern contains a wealth of information about the material that originally scattered the light--where it was and its composition. Analyzing the images provided a different set of challenges. To do so, the researchers based their research on a quantitative theory explaining the pattern of light that objects scatter. The hypothesis, the Lorenz-Mie theory, maintains that the way light is scattered can reveal the size and composition of the object that is scattering it.

"We use that theory to analyze the hologram of each object in the snapshots of our video recording,” explained Prof. Grier, who is part of NYU's Center for Soft Matter Research. "Fitting the theory to the hologram of a sphere reveals the three-dimensional position of the sphere's center with remarkable resolution. It allows us to view particles a micrometer in size and with nanometric precision--that is, it captures their traits to within one billionth of a meter. That's a tremendous amount of information to obtain about a micrometer-scale object, particularly when you consider that you get all of that information in each snapshot. It exceeds other existing technology in terms of tracking particles and characterizing their make-up--and the holographic microscope can do both simultaneously.”

Because the analysis is computationally intensive, the researchers employ the number-crunching power of the graphic processing unit (GPU) used in high-end computer video cards. Originally developed to provide high-resolution video performance for computer games, these cards possess capabilities suitable for the holographic microscope.

The investigators have already employed the technique for a range of applications, from research in basic statistical physics to analyzing the composition of fat droplets in milk. More broadly, the technique creates a fundamental level; research in these areas seeks to understand whether or not certain molecular components, i.e., the building blocks of pharmaceuticals, stick together.

One approach, called a bead-based assay, creates micrometer-scale beads whose surfaces have active groups that bind to the target molecule. Because of their small size, the challenge for researchers is to determine if these beads actually adhere to the target molecules. The way this is traditionally done is to create yet another molecule--or tag--that binds to the target molecule. This tag molecule, time-consuming, and costly to produce, is typically identified by making it fluorescent or radioactive.

The holographic imaging technique, with its magnification and recording capabilities, allows researchers to observe molecular-scale binding without a tag, saving both time and money. Requiring just one microscopic bead to detect one type of molecule, holographic video microscopy promises a previously unachievable level of miniaturization for medical diagnostic tests and creates possibilities for running very large numbers of sensitive medical tests in parallel.

The study was reported in the July 7, 2009, issue of the journal Optics Express.

Related Links:
New York University

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.