We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Normal Cells and Cancer Cells Differentiated by Degree of Protein Phosphorylation

By LabMedica International staff writers
Posted on 09 Dec 2009
Print article
Cancer researchers have developed a method to differentiate cancer and normal cells at the molecular level based on different degrees of protein phosphorylation.

At the molecular level, cancers are heterogeneous diseases, arising from genetic factors, environmental carcinogens, and random, somatic mutation. Phosphorylation of proteins is a key regulator of protein activity, and in particular, modification of tyrosine residues modulates critical signaling and control processes. In cancers, aberrant phosphorylation status of key residues (its presence or absence) has been observed and documented in many studies.

Investigators at Boston University (MA, USA) collaborated with specialists at Cell Signaling Technology (Danvers, MA, USA) in order to apply the "Phosphoscan" methodology to establish a comparative profile of the phosphorylation properties of proteins in normal and cancer cells.

They reported in the November 25, 2009, issue of the journal PLoS ONE that a large set of sites were differentially phosphorylated in tumors, many of which can be used as direct targets for new drugs. Furthermore they employed a novel computational approach to perform a protein variant of gene set enrichment analysis that showed that certain pathways were differentially activated, based on their global phosphorylation status. A relatively small number of phosphorylated peptides observed in that data could discriminate between normal tissue and tumors with a high degree of sensitivity and specificity.

"Identifying the phosphorylation status of proteins in cancer cells versus normal cells provides us with a unique ability to understand and perhaps intervene with the command and control center of cancer cells," said contributing author Dr. Simon Kasif, professor of biomedical engineering at Boston University. "Drugs are most effective on cancers when they attack the proteins that are activated."

Related Links:
Boston University
Cell Signaling Technology


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.