We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Ultraspeed Resolution Reveals that Ubiquitins Bind Sequentially

By LabMedica International staff writers
Posted on 15 Dec 2009
Print article
An innovative reaction quenching protocol with millisecond resolution has revealed that cells attach ubiquitin chains to proteins marked for destruction link by link rather than all at once.

The addition of a chain of four or more ubiquitin molecules to a target protein marks that protein for destruction by protein-degrading complexes in the cell. Heretofore, it was not known whether these molecules were added to the target protein sequentially or as a pre-formed chain.

In the current study, investigators at California Institute of Technology (Pasadena, USA) developed new methodology to study the action of ubiquitin ligase, the enzyme complex that attaches ubiquitin to the target protein at short time intervals that had not previously been possible. For this purpose, they adapted an instrument called a "quench-flow" machine, a machine that allows for extreme precision in the stopping, or "quenching," of a reaction. This instrument allowed them to follow changes in structure at intervals as short as 10 milliseconds in both yeast and human proteins.

"We devised methods to take snapshots of ubiquitin ligase reactions at a rate of up to 100 "pictures" every second," said senior author Dr. Raymond Deshaies, professor of biology at the California Institute of Technology. "This enables us to see things that would normally evade detection. Prior methods did not have sufficient time resolution to see what was going on. It is as if you gave an ice-cream cone to a kid and took pictures every minute. You would see the ice cream disappear from the first photo to the next, but since the pictures are too far apart in time, you would have no idea whether the child ate the ice cream one bite at a time, or swallowed the entire scoop in one gulp."

Results published in the December 3, 2009, issue of the journal Nature revealed that the three ubiquitin ligase enzymes, E1, E2, and E3 work as a team to build polyubiquitin chains on substrates by sequential transfers of single ubiquitins.

"The new method revealed the biological equivalent of small, single bites of ice cream," said Dr. Deshaies. "Using our approach we could see that our ubiquitin ligase builds ubiquitin chains one ubiquitin at a time. Gaining these kinds of insights into the ubiquitin system is important because ubiquitin ligases play a critical role in a number of human diseases, including cancer, due to their role in the regulation of the cell cycle."

Related Links:
California Institute of Technology


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
ELISA System
ABSOL HS DUO
New
Automated Nucleic Acid Extractor
eLab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.