We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Researchers Quantify the Uptake and Distribution of Targeted Nanoparticles

By LabMedica International staff writers
Posted on 23 Dec 2009
Print article
Nanoparticles linked to targeting molecules are increasingly being cited as potential chemotherapeutic agents, and a recent publication has now quantified how such molecules are distributed to various organelles within a target cell.

Investigators at Purdue University (West Lafayette, IN, USA) worked with nanorods constructed of gold and a magnetic material and coated with trastuzumab, an anticancer drug used to used to treat breast cancer that has metastasized in women whose tumor cells produce an overabundance of human epidermal growth factor receptor 2 (HER2). The location of the nanorods in cultured breast cancer cells was determined by a combination of magnetic resonance spectrometry and microscopy. In some experiments, the drug was marked with a fluorescent molecule, and localization was quantified and diffusion times evaluated in different cell organelles by using fluorescence correlation spectroscopy (FCS).

Results published in the November 5, 2009, online edition of the journal ACS Nano revealed that, that in treated breast cancer cells the conjugated nanoparticles co-localized with the endosome and lysosome but not with the Golgi apparatus. The nanorods had similar intracellular localization characteristics as the fluorescently labeled drug. These findings not only lay the foundations for a quantitative understanding of the fate of nanoparticle-based targeting but also provide new insights into the rational design of nanoparticle delivery systems for effective treatment.

"Each nanoparticle acts like a deliverer of a mail package, or dose, of the drug directly to the appropriate location," said senior author Dr. Joseph Irudayaraj, professor of biological engineering at Purdue University. "We have demonstrated the ability to track these nanoparticles in different cellular compartments of live cells and show where they collect quantitatively. Our methods will allow us to calculate the quantities of a drug needed to treat a cancer cell because now we know how these nanoparticles are being distributed to different parts of the cell."

Related Links:
Purdue University


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Hepato Fibrosis Assays
Hepato Fibrosis Assays
New
ELISA System
ABSOL HS DUO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.