We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Computational Model Predicts Gene Function

By LabMedica International staff writers
Posted on 04 Mar 2010
Print article
Scientists have created a new computational model that can be utilized to predict gene function of uncharacterized plant genes with unprecedented speed and accuracy. The network, dubbed AraNet, has over 19,600 genes associated to each other by over one million links and can increase the discovery rate of new genes affiliated with a given trait tenfold. It is a huge advance to essential plant biology and agricultural research.

Of spite of the immense progress in functional characterization of plant genomes, over 30% of the 30,000 Arabidopsis genes have not yet been functionally characterized. Another third has little evidence regarding their role in the plant. "In essence, AraNet is based on the simple idea that genes that physically reside in the same neighborhood, or turn on in concert with one another are probably associated with similar traits,” explained corresponding author Dr. Sue Rhee at the Carnegie Institution for Science's (Washington, DC, USA) department of plant biology. "We call it guilt by association. Based on over 50 million scientific observations, AraNet contains over one million linkages of the 19,600 genes in the tiny, experimental mustard plant Arabidopsis thaliana. We made a map of the associations and demonstrated that we can use the network to propose that uncharacterized genes are linked to specific traits based on the strength of their associations with genes already known to be linked to those characteristics.”

The network allows for two main types of assessable theories. The first uses a set of genes known to be involved in a biologic process such as stress responses, as a "bait” to find new genes ("prey") involved in stress responses. The bait genes are linked to each other based on over 24 different types of experiments or computations. If they are linked to each other much more frequently or strongly than by chance, one can hypothesize that other genes that are as well linked to the bait genes have a high probability of being involved in the same process. The second testable hypothesis is to predict functions for uncharacterized genes. There are 4,479 uncharacterized genes in AraNet that have links to ones that have been characterized, so a significant portion of all the unknowns now gets a new hint as to their function.

The scientists tested the accuracy of AraNet with computational validation tests and laboratory experiments on genes that the network predicted as related. The researchers selected three uncharacterized genes. Two of them exhibited phenotypes that AraNet predicted. One is a gene that regulates drought sensitivity, now named Drought-sensitive 1 (Drs1). The other regulates lateral root development, called lateral root stimulator 1 (Lrs1). The researchers discovered that the network is much stronger forecasting correct associations than previous small-scale networks of Arabidopsis genes.

"Plants, animals, and other organisms share a surprising number of the same or similar genes--particularly those that arose early in evolution and were retained as organisms differentiated over time,” commented a lead and corresponding author Insuk Lee at Yonsei University of South Korea (Seoul). "AraNet not only contains information from plant genes, it also incorporates data from other organisms. We wanted to know how much of the system's accuracy was a result of plant data versus nonplant-derived data. We found that although the plant linkages provided most of the predictive power, the nonplant linkages were a significant contributor.”

"AraNet has the potential to help realize the promise of genomics in plant engineering and personalized medicine,” remarked Dr. Rhee. "A main bottleneck has been the huge portion of genes with unknown function, even in model organisms that have been studied intensively. We need innovative ways of discovering gene function and AraNet is a perfect example of such innovation. Food security is no longer taken for granted in the fast-paced milieu of the changing climate and globalized economy of the 21st century.”

The investigators published their findings January 31, 2010, in the advanced online issue of the journal Nature Biotechnology.

"Innovations in the basic understanding of plants and effective application of that knowledge in the field are essential to meet this challenge. Numerous genome-scale projects are underway for several plant species. However, new strategies to identify candidate genes for specific plant traits systematically by leveraging these high-throughput, genome-scale experimental data are lagging. AraNet integrates all such data and provides a rational, statistical assessment of the likelihood of genes functioning in particular traits, thereby assisting scientists to design experiments to discover gene function. AraNet will become an essential component of the next-generation plant research,” concluded Dr. Rhee.

Related Links:
Carnegie Institution for Science


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Progesterone Serum Assay
Progesterone ELISA Kit
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.