We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Molecular Pathway That Enables Movement of Metastatic Cancer Cells Identified

By LabMedica International staff writers
Posted on 16 Oct 2011
Print article
Cancer researchers have identified a molecular pathway that seems to be responsible for the ability of metastatic tumor cells to change shape and travel.

Investigators at the University of Michigan (Ann Arbor, USA) worked with breast cancer cells growing in culture. Previous studies had shown that aggressively metastatic breast cancer cells usually overexpressed the RhoC (aplysia ras-related homolog 9) gene. In this study, they searched for the molecular trigger for RhoC expression.

They reported in the August 23, 2011, online edition of the journal Cancer Research that the protein p38gamma was directly linked to RhoC activation. P38gamma is one member of the p38 MAPK (p38 mitogen-activated protein kinase) class of mitogen-activated protein kinases. These enzymes are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are involved in cell differentiation and apoptosis.

Results from experiments with breast cancer cell cultures revealed that inactivation of p38gamma caused cells to flatten out and shift from fast motion to ineffective movement. Clinical relevance indicated that elevated expression of p38gamma was associated with lower overall survival of breast cancer patients. The critical role of p38gamma was further emphasized by data generated from a mathematical model that described how various molecules contributed to cell movement.

“Normal motion is commonly seen in aggressive cancers, which is why it is very important to understand what the key switches are for this motion,” said senior author Dr. Sofia Merajver, professor of internal medicine at the University of Michigan. “Cell movement is very difficult to observe, which is why mathematical modeling in oncology is valuable. This gives us a more complete understanding of how aggressive breast cancer cells move and the influence of p38gamma in particular on modifying this motion.”

“We do have targeted therapies in the clinic, but the total burden of disease that they ameliorate is still relatively minimal. The reasons may not necessarily be that they are not good drugs, but simply that we do not understand how they work, because we do not understand the biology in sufficient detail. That’s why studies like this are so important in advancing drug development,” said Dr. Merajver.

Related Links:
University of Michigan


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.