We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Discovery May Lead to New Treatments for Myeloproliferative Disorders

By LabMedica International staff writers
Posted on 27 Feb 2012
Print article
A recent paper outlined the molecular basis for the inhibition of Janus kinases (JAKs)--key effectors in controlling immune responses and maintaining blood cell production--by their major regulator SOCS3 (suppressor of cytokine signaling-3).

Mutations in the JAK2 gene that prevent SOCS inhibition have been implicated in polycythemia vera, essential thrombocythemia, and other myeloproliferative disorders. This mutation, a change of valine to phenylalanine at the 617 position, appears to render hematopoietic cells more sensitive to growth factors such as erythropoietin and thrombopoietin. On the other hand, loss of Jak2 is lethal by embryonic day 12 in mice. The role of JAK2 in triggering myeloproliferative disorders has elicited drug developers to search for drugs to block its activity. So far, however, clinical trials of candidate drugs have shown limited efficacy and apparent toxicities.

In the current study, investigators at the Walter and Eliza Hall Institute (Parkville, VIC, Australia) investigated the molecular basis of the JAK-SOCS interaction.

They reported in the February 16, 2012, online edition of the journal Immunity that SOCS3 bound and directly inhibited the catalytic domains of JAK1, JAK2, and TYK2 but not JAK3 via an evolutionarily conserved motif unique to JAKs. Mutation of this motif led to the formation of an active kinase that could not be inhibited by SOCS3. SOCS3 simultaneously bound JAK and the cytokine receptor to which it is attached, revealing how specificity is generated in SOCS action and explaining why SOCS3 inhibits only a subset of cytokines. Importantly, SOCS3 inhibited JAKs via a noncompetitive mechanism, making it a template for the development of specific and effective inhibitors to treat JAK-based immune and proliferative diseases.

“JAK proteins are activated in response to blood cell hormones called cytokines and instruct immune cells to respond to infection and inflammation,” said first author Dr. Jeff Babon, laboratory head in the division of structural biology at the Walter and Eliza Hall Institute. “SOCS proteins were discovered at the institute in the early 2000s, and provide a necessary negative feedback response that stops JAKs becoming overactive, which can lead to disease.”

“When JAK2 is mutated, it tells cells to continually multiply. An excessive amount of blood cells of one type are produced, and the bone marrow is overrun, leading to problems with production of other cell types, and eventually bone marrow failure,” said Dr. Babon. “SOCS3 is a key inhibitor of JAK2 proteins in blood and immune cells, but we did not know exactly how the two proteins interacted to suppress JAK2 function. We wanted to identify which site the SOCS3 protein bound to on the JAK2 protein to inhibit its action, and were surprised to find that SOCS3 binds to a unique site on JAK2 and directly inhibits the protein, rather than outcompeting other molecules. The SOCS3 binding site is a previously unknown part of the JAK2 protein which could be exploited as a drug target, with greater specificity than other drugs that are currently in clinical trials for inhibiting JAK2.”

Related Links:
Walter and Eliza Hall Institute

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.