We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanopore Mechanism Allows Single Strand DNA Sequencing

By LabMedica International staff writers
Posted on 09 Apr 2012
Print article
A recent paper described dramatic progress in the development of a nanopore mechanism for rapid sequencing of single DNA strands.

The study, which was published in in the March 25, 2012, online edition of the journal Nature Biotechnology, was based on a nanopore structure that had been created by genetic engineering of a protein pore from Mycobacterium smegmatis. The diameter of the pore was such that only a single strand of DNA could pass through. A molecule of DNA polymerase was attached to the nanopore and acted to pull the DNA strand through the pore. The nanopore structure was placed in a membrane surrounded by potassium-chloride solution, with a small voltage applied to create an ion current flowing through the nanopore.

Details presented in the study revealed that the electrical signature produced by the pore changed depending on the type of nucleotide traveling through it. Each type of DNA nucleotide - cytosine, guanine, adenine, and thymine – produced a distinctive signature. The nanopore complex was tested with six different strands of DNA, and results corresponded to the already known DNA sequence of the strands, which had readable regions 42 to 53 nucleotides long.

“There is a clear path to a workable, easily produced sequencing platform,” said senior author Dr. Jens Gundlach, professor of physics at the University of Washington (Seattle, USA). “We augmented a protein nanopore we developed for this purpose with a molecular motor that moves a DNA strand through the pore a nucleotide at a time. The motor pulls the strand through the pore at a manageable speed of tens of milliseconds per nucleotide, which is slow enough to be able to read the current signal.”

“Epigenetic modifications are rather important for things like cancer," said Dr. Gundlach. “Being able to provide DNA sequencing that can identify epigenetic changes is one of the charms of the nanopore sequencing method. With techniques like this, it might get down to a 10-dollar or 15-minute genome project. It is moving fast.”

Related Links:
University of Washington



Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Rheumatoid Arthritis Test
Finecare RF Rapid Quantitative Test
New
Urine Drug Test
Instant-view Propoxyphene Urine Drug Test

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.