We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Emerging Method Enables More Effective and Timely Protein Imaging

By LabMedica International staff writers
Posted on 02 May 2012
Print article
Image: Model from improved method of protein imaging (Photo courtesy of the University of Gothenburg.)
Image: Model from improved method of protein imaging (Photo courtesy of the University of Gothenburg.)
A unique new method for protein imaging has now been tested on a lipid phasic membrane protein with excellent results. The method remains X-ray based but uses technology that could replace current X-ray-based approaches and has potential to advance the challenging field of membrane protein structural biology rapidly. It also has potential to film a protein in motion – at the molecular level.

X-ray free-electron laser (X-FEL) based serial femtosecond crystallography (SFC) is an emerging method, which has now been successfully applied to record interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of a bacterial photosynthetic-reaction center membrane protein.

Two major technical challenges for imaging proteins are to create the right sized protein crystals and then to irradiate them in such a way that they do not disintegrate. The commonly used type of technology is not sufficiently light intensive and therefore requires large protein crystals, which take several years to produce. In the new study published in the journal Nature Methods on January 29, 2012, scientists have shown that it is possible to use very small crystals to determine a membrane protein structure. In addition, “we have developed a new method of creating incredibly small protein crystals,” noted Linda Johansson, lead author of the article and doctoral student at the Department of Chemistry and Molecular Biology of the University of Gothenburg (Sweden).

Earlier, Richard Neutze, senior author and professor of biochemistry at the University of Gothenburg, and his research group were among the first in the world to image proteins using very short and intensive X-ray pulses. Neutze was one of the researchers to float the idea that it might be possible to image small-crystal protein samples using free-electron lasers, which emit intensive X-ray radiation in extremely short pulses. The kind of facility that could enable such work has been available in California since 2009, and it is this unique facility that was used for the current study.

“Producing small protein crystals is easier and takes less time, so this method is much faster,” says Linda Johansson. “We hope that it’ll become the standard over the next few years. X-ray free-electron laser facilities are currently under construction in Switzerland, Japan, and Germany.”

Another key discovery was that far fewer images are needed to map the protein than previously believed. Using a free-electron laser it is possible to produce around 60 images per second, which meant that the team had over 365,000 images at its disposal. However, only 265 images were needed to create a three-dimensional model of the protein.

“We’ve managed to create a model of how this protein looks,” says Johansson; “The next step is to make films where we can look at the various functions of the protein, for example how it moves during photosynthesis.”

The study was an international collaboration carried out by researchers from Sweden, Germany, and the US.

Related Links:

University of Gothenburg



New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Flow Cytometer
BF – 710
New
Automated Nucleic Acid Extractor
eLab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.