Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Emerging Method Enables More Effective and Timely Protein Imaging

By LabMedica International staff writers
Posted on 02 May 2012
A unique new method for protein imaging has now been tested on a lipid phasic membrane protein with excellent results. The method remains X-ray based but uses technology that could replace current X-ray-based approaches and has potential to advance the challenging field of membrane protein structural biology rapidly. It also has potential to film a protein in motion – at the molecular level.

X-ray free-electron laser (X-FEL) based serial femtosecond crystallography (SFC) is an emerging method, which has now been successfully applied to record interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of a bacterial photosynthetic-reaction center membrane protein.

Two major technical challenges for imaging proteins are to create the right sized protein crystals and then to irradiate them in such a way that they do not disintegrate. The commonly used type of technology is not sufficiently light intensive and therefore requires large protein crystals, which take several years to produce. In the new study published in the journal Nature Methods on January 29, 2012, scientists have shown that it is possible to use very small crystals to determine a membrane protein structure. In addition, “we have developed a new method of creating incredibly small protein crystals,” noted Linda Johansson, lead author of the article and doctoral student at the Department of Chemistry and Molecular Biology of the University of Gothenburg (Sweden).

Earlier, Richard Neutze, senior author and professor of biochemistry at the University of Gothenburg, and his research group were among the first in the world to image proteins using very short and intensive X-ray pulses. Neutze was one of the researchers to float the idea that it might be possible to image small-crystal protein samples using free-electron lasers, which emit intensive X-ray radiation in extremely short pulses. The kind of facility that could enable such work has been available in California since 2009, and it is this unique facility that was used for the current study.

“Producing small protein crystals is easier and takes less time, so this method is much faster,” says Linda Johansson. “We hope that it’ll become the standard over the next few years. X-ray free-electron laser facilities are currently under construction in Switzerland, Japan, and Germany.”

Another key discovery was that far fewer images are needed to map the protein than previously believed. Using a free-electron laser it is possible to produce around 60 images per second, which meant that the team had over 365,000 images at its disposal. However, only 265 images were needed to create a three-dimensional model of the protein.

“We’ve managed to create a model of how this protein looks,” says Johansson; “The next step is to make films where we can look at the various functions of the protein, for example how it moves during photosynthesis.”

The study was an international collaboration carried out by researchers from Sweden, Germany, and the US.

Related Links:

University of Gothenburg




Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.