We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Disrupted Genetic Systems Discovered in Autistic Brain

By LabMedica International staff writers
Posted on 17 May 2012
Print article
By investigating gene collections rather than individual genes, researchers have now identified specific functional systems with genetic disruptions in the autistic brain.

Autism, the severe state resulting from multiple neurodevelopmental disorders named autism spectrum disorders (ASDs), is known to have a strong genetic basis. However, efforts to identify the responsible genes have so far had mixed results due to the influence of many different genes as well as that different genes are involved in different autistic individuals. Scientists at the Hebrew University of Jerusalem (HUJ; Jerusalem, Israel) chose to examine groups of genes to identify and better understand multiple pathways involved in ASDs.

The study, published in the journal PLoS Genetics in March 2012, showed that the different genes involved in autism tend to be involved in specific brain processes. This can explain similarities in the behavioral symptoms of different autistics as well as the large spectrum of behaviors observed in different autistic individuals.

The main goal of the project, conducted by Dr. Sagiv Shifman and his doctoral student Eyal Ben-David at the HUJ Department of Genetics, was to test the contribution of rare genetic mutations as well as genetic variations common in the population, and to see whether these different types of genetic risk factors are related. To that end, the scientists used the Allen Brain Atlas RNA microarray dataset to construct a robust network of the human brain transcriptome based on the expression pattern of genes across different brain areas. This allowed them to discover groups of genes with shared function in the brain. Next, based on genetic data from thousands of families with autistic children, the researchers studied the contribution of different groups of genes to autism.

To their surprise, they found -- when looking at mutations found in autism as well as thousands of common gene variants that are more frequently seen in autistics -- that these mutations and variations are located in specific functional groups, that the genetic risk factors were enriched in specific groups of connected genes. When looking at families with one autistic individual (sporadic cases), and in families where there is more than one affected individual (multiplex cases), the same variants were seen acting in both cases. These groups of genes are highly active in the first year of life, and the strongest enriched of risk factors corresponded to a group of genes involved in processes of learning, memory, and sensory perception.

Shifman and Ben-David believe their work could help pave the way for development of genetic scans for early diagnosis of autism, and, by concentrating on specific gene groups, for the design of effective therapeutic drugs that could alleviate symptoms in autistics with different genetic backgrounds.

Related Links:

Hebrew University of Jerusalem


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: SCOPE IO has shown promise in predicting immunotherapy response in rare cancer patients (Photo courtesy of Lunit)

AI-Powered Whole-Slide Image Analyzer Predicts Immunotherapy Response for Rare Cancer Patients

Immunotherapy, especially immune checkpoint inhibitors like pembrolizumab, has become a groundbreaking treatment for cancer patients. However, not all patients respond the same way to this therapy, and... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.