We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Turning Stem Cells from Fat into Blood Vessels

By LabMedica International staff writers
Posted on 13 Aug 2012
Print article
Autologous adult stem cells extracted via liposuction from fat tissue can provide the raw materials for growing tissue-engineered blood vessel (TEBV) in the lab, according to a new study.

Researchers at the University of Oklahoma (Norman, USA) first differentiated adipose-derived stem cells into smooth muscle cells (SMCs), and then seeded them onto a flat sheet of the human amniotic membrane--a very thin collagen membrane--used as a biological substrate to fabricate the small-diameter TEBVs. To develop a tubular construct similar to that of a muscular artery's tunica media layer, the cell-seeded sheet was wrapped around a 3-mm removable mandrel with six to seven revolutions. After a two-week static culture period, the fabricated TEBV was assessed for biochemical and mechanical properties.

The researchers examined and compared the contraction of the vessel in response to carbachol--a specific agonist for SMCs--to that of porcine coronary arteries; burst pressure and elastic modulus tests were also conducted. The researchers found that the thickness and architecture of the engineered vessel matched that of a porcine coronary artery in a histological analysis; it also performed better than the porcine vessel for elasticity in a tensile strength test. However, the burst pressure was too low, at about 150 mm Hg, while native tissue withstands 1,000 mm Hg. The problem, according to the researchers, appeared to be that the layers of the rolled-up vessel are not adhering well to one another.

The researchers found that the mechanical integrity of the construct could be further improved by exposure to appropriate physiological conditions in a perfusion bioreactor, and that adipose-derived endothelial cells also could be seeded into the lumen of the construct to prevent platelet adhesion. The study was presented at the American Heart Association Basic Cardiovascular Sciences 2012 scientific sessions, held during July 2012 in New Orleans (LA, USA).

“These liposuction-derived vessels, grown in a lab, could help solve major problems associated with grafting blood vessels from elsewhere in the body or from using artificial blood vessels that are not living tissue,” concluded lead author and study presenter Matthias Nollert, PhD, and colleagues of the school of chemical, biological, and materials engineering. “Our engineered blood vessels have good mechanical properties and we believe they will contract normally when exposed to hormones.”

Related Links:

University of Oklahoma



Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Respiratory QC Panel
Assayed Respiratory Control Panel

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.