We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Technique Improves Investigation of Interactions Between HIV and Malaria Parasite

By LabMedica International staff writers
Posted on 27 Aug 2012
Print article
A new video article describes a novel technique used to study the interactions between HIV-1 and Plasmodium falciparum in cultured human cells, allowing scientists to explore different parameters of coinfection by the two microbes.

Due to their extensive overlap in some developing regions, especially Sub-Saharan Africa, coinfections with malaria and HIV-1 are common, but the interplay between the two diseases is poorly understood and a systematic analysis of the interactions in different relevant human primary cell populations is critically needed. Each disease affects the immune system differently and by studying coinfection at different phases of each disease in vitro, scientists can better understand how different stages of malaria infection and HIV reproduction affect the onset and severity of the other disease.

In this study, an in vitro Plasmodium-HIV-1 coinfection model was developed and used to investigate the impact of P. falciparum-infected red blood cells on the HIV-1 replicative cycle in human primary monocyte-derived macrophages (MDMs). The impact of parasite exposure on HIV-1 transcriptional/translational events was monitored by using single cycle pseudotyped viruses in which a luciferase reporter gene has replaced the Env gene, while the effect on the quantity of progeny virus released by the infected macrophages is determined by measuring the HIV-1 capsid protein p24 by ELISA in cell supernatants. The researchers observed that exposure of P. falciparum to MDMs, decreases their susceptibility to HIV-1 infection, exerting a clear detrimental effect on the HIV-1 replicative cycle in macrophages (not excluding the possibility of other effects under different conditions).

The new technique, developed and applied by the laboratory led by Dr. David Richard of the Centre Hospitalier Universitaire de Quebec (CHUQ; Quebec City, Quebec, CA; www.chuq.qc.ca), was published August 15, 2012, in the online video Journal of Visualized Experiments (JoVE). "By publishing in JoVE, you really see what is happening in the experiment. The visual representation helps succinctly explain a long procedure, and gives you a fuller picture of the schematic complexity," said Dr. Richards. He hopes that this publication will give the scientific community an important additional tool to look at the interactions of the coinfection encounter on a cellular level and to more thoroughly dissect these interactions in a simplified system. This versatile system can also be adapted to monitor other factors and to use other primary cell types susceptible to HIV-1 infection. "Publication of the protocol in JoVE will allow researchers around the world to see a detailed demonstration of this system, which will help bring the technology to their laboratories," said JoVE editor Dr. Charlotte Frank Sage.

Related Links:

Centre Hospitalier Universitaire de Quebec
Journal of Visualized Experiments



Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.