We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Antioxidant Nanoparticles Neutralize Superoxide and Restore Blood Flow Following Traumatic Brain Injury

By LabMedica International staff writers
Posted on 05 Sep 2012
Print article
A novel class of potent antioxidant nanoparticles restores brain blood flow and normalizes superoxide and nitric oxide levels in the brains of a rat model of traumatic brain injury (TBI).

Cerebrovascular dysfunction, manifested by reduction in cerebral blood flow (CBF), is a key factor that worsens outcome after TBI, most notably under conditions of hypotension. In a traumatic brain injury, damaged cells release an excessive amount of the reactive oxygen species (ROS) superoxide (SO) into the blood. Healthy organisms balance SO with increased production of the neutralizing enzyme superoxide dismutase (SOD), but even mild brain trauma can release superoxides at levels that overwhelm the brain’s capacity for SOD synthesis.

Based on data accumulated in studies designed to enhance cancer treatment via nanoparticle-based drug delivery, investigators at Rice University (Houston, TX, USA) decided to test their potential for treating TBI. These poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs) represent a new class of nontoxic, antioxidant carbon-based nanoparticles.

PEG-HCCs were administered to a mild TBI/hypotension/resuscitation rat model during resuscitation, which is a clinically relevant time point. Results published in the August 6, 2012, online edition of the journal ACS Nano revealed that the particles rapidly restored CBF. Along with restoration of CBF, there was a concomitant normalization of superoxide and nitric oxide levels.

“Superoxide is the most deleterious of the reactive oxygen species, as it is the progenitor of many of the others,” said senior author Dr. James M. Tour, professor of chemistry, mechanical engineering, and materials science at Rice University. “If you do not deal with SO, it forms peroxynitrite and hydrogen peroxide. SO is the upstream precursor to many of the downstream problems. While an SOD enzyme can alter only one superoxide molecule at a time, a single PEG-HCC about the size of a large protein at two to three nanometers wide and 30 to 40 nanometers long can quench hundreds or thousands. This is an occasion where a nano-sized package is doing something that no small drug or protein could do, underscoring the efficacy of active nano-based drugs.”

“This might be a first line of defense against reactive oxygen species (ROS) that are always overstimulated during a medical trauma, whether that be to an accident victim or an injured soldier,” said Dr. Tour. “They are certainly exacerbated when there is trauma with massive blood loss.”

Related Links:
Rice University



New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test
New
Automated Cell Counter
QuadCount

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.