We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Tripeptide Drug Reverses the Gene Expression Signature in Chronically Damaged Lung Tissue

By LabMedica International staff writers
Posted on 13 Sep 2012
Print article
A natural peptide found in human plasma that decreases in amount during the aging process was found to stimulate tissue repair genes that have been downregulated in lung tissue damaged by chronic obstructive pulmonary disease (COPD).

COPD is a heterogeneous disease consisting of emphysema, small airway obstruction, and/or chronic bronchitis that results in significant loss of lung function over time. COPD is particularly common in cigarette smokers where the chronic irritants present in tobacco smoke cause oxidative stress and chronic inflammation, which over time results in emphysema, the destruction of lung alveolar cells.

Investigators at the Boston University School of Medicine (MA, USA) profiled gene expression in lung tissue samples obtained from regions within the same lung with varying amounts of emphysematous destruction from smokers with COPD. Eight sections from eight different smokers were analyzed.

Results published in the August 31, 2012, online edition of the journal Genome Medicine revealed 127 genes with expression profiles that were significantly associated with regional emphysema severity while controlling for gene expression differences between individuals. Genes increasing in expression with increasing emphysematous destruction included those involved in inflammation, such as the B-cell receptor-signaling pathway, while genes decreasing in expression were enriched in tissue repair processes, including the transforming growth factor (TGF) pathway, actin organization, and integrin signaling.

The investigators then used the Connectivity Map to identify the tripeptide GHK (Gly-His-Lys) as a compound that could reverse the gene-expression signature associated with emphysematous destruction and induce expression patterns consistent with TGF pathway activation. Treatment of human fibroblasts with GHK recapitulated TGF-induced gene-expression patterns, led to the organization of the actin cytoskeleton, and elevated the expression of integrin 1. Furthermore, addition of GHK or TGF restored collagen I contraction and remodeling by fibroblasts derived from COPD lungs compared to fibroblasts from former smokers without COPD.

The Broad Institute's Connectivity Map (cmap) (Cambridge, MA, USA) is a collection of genome-wide transcriptional expression data from cultured human cells treated with bioactive small molecules and simple pattern-matching algorithms that together enable the discovery of functional connections between drugs, genes, and diseases through the transitory feature of common gene-expression changes.

A web interface provides access to the current version of Connectivity Map, which contains more than 7,000 expression profiles representing 1,309 compounds. It is designed to allow biologists, pharmacologists, chemists, and clinical scientists to use cmap without the need for any specialist ability in the analysis of gene-expression data.

"When we searched the Connectivity Map database, which is essentially a compendium of experiments that measure the effect of therapeutic compounds on every gene in the genome, we found that how genes were affected by the compound GHK, a drug known since the 1970s, was the complete opposite of what we had seen in the cells damaged by emphysema," said senior author Dr. Avrum Spira, associate professor of medicine, pathology, and bioinformatics at the University of Boston School of Medicine."


Related Links:
Boston University School of Medicine
Broad Institute's Connectivity Map

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Myeloperoxidase Assay
IDK MPO ELISA

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.