We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




MicroRNA Linked to Breast Cancer Metastasis and Decreased Patient Survival

By LabMedica International staff writers
Posted on 01 Jan 2013
Print article
Cancer researchers have identified a molecule that enhances the metastatic potential of breast cancers by promoting epithelial-mesenchymal transition, migratory and invasive phenotypes, and by stimulating resistance to anoikis.

Anoikis is a form of programmed cell death that is induced by anchorage-dependent cells detaching from the surrounding extracellular matrix (ECM). Usually cells stay close to the tissue to which they belong since the communication between proximal cells as well as between cells and ECM provide essential signals for growth or survival. When cells are detached from the ECM, there is a loss of normal cell-matrix interactions, and they may undergo anoikis. However, metastatic tumor cells may escape from anoikis and invade other organs.

Investigators at Case Western Reserve University (Cleveland, OH, USA) attempted to recapitulate tumor and metastatic microenvironments by using biomechanically compliant or rigid 3-dimensional culture systems and combining them with global microRNA (miRNA) profiling analyses to identify miRNAs that were upregulated in metastatic breast cancer cells by TGF-beta (transforming growth factor-beta receptor 2). TGF-beta acts as an antiproliferative factor in normal epithelial cells and at early stages of cancer development. When a cell is transformed into a cancer cell, parts of the TGF-beta signaling pathway are mutated, and TGF-beta no longer controls the cell. These cancer cells and surrounding stromal cells (fibroblasts) begin to proliferate. Both types of cell increase their production of TGF-beta. This TGF-beta acts on the surrounding stromal cells, immune cells, endothelial and smooth muscle cells. It causes immunosuppression and angiogenesis, which makes the cancer more invasive.

The investigators reported in the December 17, 2012, online edition of the Journal of Clinical Investigation that expression of a specific miRNA, miR-181a, was dramatically and selectively upregulated in metastatic breast tumors, particularly triple-negative breast cancers, and was highly predictive for decreased overall survival in human breast cancer patients.

Mechanistically, inactivation of miR-181a elevated the expression of the pro-apoptotic molecule Bim, which sensitized metastatic cells to anoikis. MiR-181a expression was essential in driving metastatic outgrowth and enhancing the lethality of late-stage mammary tumors in mice.

“Overall, these findings reinforce our belief that the discovery of miR-181a will become a strong predictive biomarker for breast cancer metastasis, and that the high expression of miR-181a in tumor tissues will pave the way for the development of targeted therapies, better prognosis, and increased patient survival,” said senior author Dr. William Schiemann, associate professor of general medical sciences at Case Western Reserve University. “The identification of an RNA that regulates cell death may offer a natural molecule that can resensitize metastatic breast cancers to chemotherapy.”

Related Links:

Case Western Reserve University


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Flu Test
ID NOW Influenza A & B 2
New
Incubator
HettCube 120

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.