Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Regulation of Cell Senescence Depends on Malic Enzymes Interacting with the p53 Tumor Suppressor

By LabMedica International staff writers
Posted on 22 Jan 2013
The role of the p53 tumor suppressor gene in regulating cell senescence may involve interacting in a positive feedback mechanism with the tricarboxylic-acid-cycle-associated malic enzymes ME1 and ME2.

The tumor suppressor protein p53 is normally found at low levels, but when DNA damage is sensed, p53 levels rise and initiate protective measures. The protein binds to many regulatory sites in the genome and begins production of proteins that halt cell division until the damage is repaired. Or, if the damage is too severe, p53 initiates the process of apoptosis, permanently removing the damage. Mutations in the p53 gene contribute to about half of the cases of human cancer. Most of these are missense mutations, changing the information in the DNA at one position and, by inserting an incorrect amino acid at one point in the protein chain, causing the cell to produce p53 with an error. In these mutants, normal p53 function is blocked and the protein is unable to stop multiplication of the damaged cell. If the cell has other mutations that cause uncontrolled growth, it will develop into a tumor.

A paper published in the January 13, 2013, online edition of the journal Nature on the relationship between p53 and cell senescence linked the activity of the tumor suppressor to a specific metabolic process. Investigators at the University of Pennsylvania (Philadelphia, USA) found that in both cell cultures and a mouse model p53 was critically involved in the functioning of the malic enzymes ME1 and ME2. Both malic enzymes are important for NADPH production, lipogenesis, and glutamine metabolism, but ME2 has a more profound effect.

Results indicated that through the inhibition of the malic enzymes, p53 regulated cell metabolism and proliferation. Downregulation of ME1 and ME2 reciprocally activated p53 through a distinct mechanism in a feed-forward manner, bolstering this pathway and enhancing p53 activation. Downregulation of ME1 and ME2 also modulated the outcome of p53 activation, leading to strong induction of senescence, but not apoptosis, whereas enforced expression of either malic enzyme suppressed senescence.

In the mouse model, loss of either ME1 or ME2 reduced tumor weight, even in animals genetically engineered to lack the p53 gene. In contrast, overexpression of malic enzymes led to more substantial tumors.

"Those enzymes could potentially serve as anticancer drug targets," said senior author Dr. Xiaolu Yang, professor of cancer biology at the University of Pennsylvania." But, equally important, they may also play a role in the normal process of cellular aging. Senescence is aging at the cellular level. We may have identified a good starting point to understand how aging works."

Related Links:
University of Pennsylvania


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
H.pylori Test
Humasis H.pylori Card
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.