We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




3-Photon Microscopy Breaks Depth Limit of Current Biological Tissue Imaging

By LabMedica International staff writers
Posted on 07 Feb 2013
Print article
Image:  A horizontal frame from 3D reconstructed 3-photon microscopy images in a mouse brain. Red: neurons, blue: blood vessels, dark holes: nonfluorescent neurons (Photo courtesy of Prof. Xu’s laboratory, Cornell University).
Image: A horizontal frame from 3D reconstructed 3-photon microscopy images in a mouse brain. Red: neurons, blue: blood vessels, dark holes: nonfluorescent neurons (Photo courtesy of Prof. Xu’s laboratory, Cornell University).
In a proof-of-concept study of a live mammalian brain, scientists have now shown that 3-photon microscopy enables high-resolution, noninvasive in vivo imaging at unprecedented depths of complex biological tissue, breaking the fundamental depth limit of standard 2-photon microscopy.

The team of scientists, at Cornell University (Ithaca, NY, USA), have demonstrated a three-fold improvement in the depth limit of fluorescence-based biological tissue imaging over the widely used 2-photon microscopy (2PM) based technology (invented at Cornell in 1990). Tissue scattering limits the maximum imaging depth of 2PM to the cortical layer of the mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Senior investigator Chris Xu, associate professor of applied and engineering physics, and colleagues have now demonstrated high-resolution, 3D imaging of the subcortical region of a live, intact mouse brain using 3-photon microscopy (3PM) based imaging technology (invented at Cornell in 1995).

The study, published online January 20, 2013, in the journal Nature Photonics, describes 3-photon fluorescence combined with a longer excitation wavelength of the laser pulse to overcome obstacles such as tissue scattering and absorption, which have prohibited high-resolution imaging deep within biological tissues. Dyes and transgenic mice were used to test the 3PM on different fluorescent signals. Using the live mouse brain model, the researchers have proved the principle of 3PM operating at a wavelength of 1,700 nanometers and this, in combination with the new laser developed specifically for 3-photon excitation, allowed for the high-resolution imaging at unprecedented depths within the brain—vascular structures as well as neurons within the mouse hippocampus were imaged.

"With MRI, we can see the whole brain but not with the resolution we have demonstrated. The optical resolution is about 100 to 1,000 times higher and allows us to clearly visualize individual neurons," said Prof. Xu. Pushing these depth limits is important for basic science and could also prove useful clinically, Prof. Xu noted. Depression and diseases like Parkinson's and Alzheimer's are associated with changes deep inside the brain, and finding the cures could be helped by subcortical neural imaging—below the gray matter, into the white matter and beyond, if the brain is visualized as stacked layers. If 3-photon microscopy can be used to map the entire brain, it could pave the way to new breakthroughs in neuroscience as well as other clinically relevant areas.

Related Links:

Cornell University


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
Flu Test
ID NOW Influenza A & B 2

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.