We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




fMRI Scanning of Biomarker Predicts Response to Rapid Antidepressant Agent

By LabMedica International staff writers
Posted on 12 Feb 2013
Print article
Image: Working memory task: Over several trials, participants were required to attend to either the identity (non-emotional feature) or the emotion of a face, remember it during a 9 second delay, and match the feature to a subsequent face. Neural activity in the visual cortex elicited by the emotion trials predicted a patient’s subsequent responsiveness to scopolamine treatment (Photo courtesy of Maura Furey, PhD, NIMH Experimental Therapeutics and Pathophysiology Branch).
Image: Working memory task: Over several trials, participants were required to attend to either the identity (non-emotional feature) or the emotion of a face, remember it during a 9 second delay, and match the feature to a subsequent face. Neural activity in the visual cortex elicited by the emotion trials predicted a patient’s subsequent responsiveness to scopolamine treatment (Photo courtesy of Maura Furey, PhD, NIMH Experimental Therapeutics and Pathophysiology Branch).
A characteristic jump in activity in the back of the brain while processing emotional data has been shown to predict which depressed patients would respond to an investigational rapid-acting antidepressant agent.

US researchers reported new research on functional magnetic resonance imaging (fMRI) of a pretreatment biomarker for the antidepressant response to scopolamine, and the study’s findings were published January 30, 2013, online in JAMA Psychiatry. “We have discovered a potential neuroimaging biomarker that may eventually help to personalize treatment selection by revealing brain-based differences between patients,” explained Maura Furey, PhD, of US National Institutes of Health’s National Institute of Mental Health (NIMH; Bethesda, MD, USA).

Scopolamine, typically recognized as a treatment for motion sickness, has been researched since Dr. Furey and colleagues discovered its fast-acting antidepressant properties in 2006. Dissimilar to ketamine, scopolamine works through the brain’s acetylcholine chemical messenger system. The NIMH scientists’ research has shown that by suppressing receptors for acetylcholine on neurons, scopolamine can lift depression in many patients within a few days; conventional antidepressants typically take weeks to work. But not all patients respond, prompting interest in a predictive biomarker.

The acetylcholine system plays a key role in working memory, retaining information in the mind temporarily, but appears to act by influencing the processing of data instead of through memory. fMRI scanning studies suggest that visual working memory performance can be enhanced by modulating acetylcholine-induced activity in the brain’s visual processing region, called the visual cortex, when processing information that is vital to the task. Because functional memory performance can predict response to traditional antidepressants and ketamine, Dr. Furey and coworkers looked at a working memory task and imaging visual cortex activity as potential tools to identify a biomarker for scopolamine response.

Depressed patients have a well-known tendency to process and remember negative emotional information. The researchers suggest that this bias stems from dysregulated acetylcholine systems in some patients. They rationalized that such patients would show abnormal visual cortex activity in response to negative emotional features of a working memory task. They also expected to find that patients with more dysfunctional acetylcholine systems would respond better to scopolamine treatment.

Before receiving scopolamine, participants performed a working memory task while their brain activity was monitored via fMRI. For some trials, it required that they pay attention to, and remember, the emotional expression (i.e., happy, sad) of faces flashing on a computer monitor. For other studies, they had to pay attention to only the identity, or non-emotional feature, of the faces. After scanning, and over the following several weeks, 15 patients with depression and 21 healthy participants randomly received infusions of a placebo (salt solution) and/or scopolamine. Mood changes were tracked with depression rating scales.

Overall, scopolamine treatment reduced depression symptoms by 63%, with 11 of the patients showing a significant clinical response. The strength of this response correlated considerably with visual cortex activity during key phases of the working memory task--while participants were paying attention to the emotional content of the faces. There was no such correlation for trials when they attended to the facial identity.

The evidence suggests that acetylcholine system activity triggers visual cortex activity that predicts treatment response—and that dissimilarities seen between depressed patients and controls may be traceable to acetylcholine dysfunction. Overall, patients showed lower visual cortex activity than controls during the emotion phase of the task. Patients demonstrating activity levels most unlike the control subjects experienced the greatest antidepressant response to scopolamine treatment. Visual cortex activity in patients who did not respond to scopolamine more closely resembled that of the controls. As theorized, the pretreatment level of visual cortex activity seems to reflect the extent of patients’ acetylcholine system dysfunction and to predict their response to the investigational medication, according to the researchers.

Early findings suggest that such visual cortex activity in response to emotional stimuli may also apply to other treatments and may prove to be a shared biomarker of rapid antidepressant response, according to Dr. Furey.

Related Links:
National Institute of Mental Health

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Uric Acid and Blood Glucose Meter
URIT-10
New
Aspergillus Test
REALQUALITY Aspergillus

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.