Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Actin-Binding Surface on Vinculin Mediates Mechanical Aspects of Cell Movement

By LabMedica International staff writers
Posted on 07 May 2014
A team of cell biologists has obtained data that shows how two proteins, vinculin and actin, function in concert to regulate cell morphology, motility, and mechanotransduction (the conversion of mechanical signals into electrical or chemical signals) and play a critical role in metastasis.

Vinculin is a cytoskeletal scaffold protein essential for embryogenesis and cardiovascular function. It localizes to focal adhesions and adherens junctions, where it connects cell surface receptors to the actin cytoskeleton. While vinculin interacts with many adhesion proteins, its interaction with filamentous actin regulates cell morphology, motility, and mechanotransduction.

Investigators at the University of North Carolina (Chapel Hill, USA) used negative-stain electron microscopy, discrete molecular dynamics techniques, and mutagenesis to develop a new model to explain the interaction between vinculin and actin. A major breakthrough in this effort was the development of mutated versions of vinculin that disrupted the actin/vinculin interaction in specific and traceable fashion.

Results published in the April 2014 online edition of the journal Structure revealed that actin-binding deficient vinculin variants expressed in vinculin knockout fibroblasts failed to correct cell-spreading defects and reduced cellular response to external force. These findings highlighted the importance of this actin-binding surface and provided the molecular basis for elucidating additional roles of this interaction, including actin-induced conformational changes that promoted actin bundling.

“Our data suggest that there is a face on the vinculin tail that has been ignored by the previous model, and that it is very important,” said first author Peter Thompson, a graduate researcher at the University of North Carolina. “In your cardiovascular system – your heart and arteries – the cells that form these organs need to stick together tightly. They do these in part by forming cell-to-cell adherens junctions. Vinculin creates a critical physical link between the actin cytoskeleton and these junctions. If you disrupt that, the hypothesis is that cells no longer respond appropriately to force and the organ suffers.”

“Our data supported a unique surface that was important for actin binding,” said senior author Dr. Sharon Campbell, professor of biochemistry and biophysics at the University of North Carolina. “Identification of this actin binding surface on vinculin has enabled us to dissect how this critical interaction controls how cells respond to force and move. This in turn, will help us better understand how dysregulation leads to disease.”

Related Links:
University of North Carolina



Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2
New
Uric Acid and Blood Glucose Meter
URIT-10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.