We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

By LabMedica International staff writers
Posted on 26 Aug 2014
Print article
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).
An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions.

To promote development of low molecular weight ion transporter drugs, investigators at The University of Texas, Austin (USA) sought to show that there was a direct correlation between a change in cellular chloride anion concentration and cytotoxicity for synthetic ion carriers.

To accomplish this goal, the investigators and their colleagues from five other research institutes created two synthetic ion transporters—pyridine diamide-strapped calix[4]pyrroles—that bind to chloride ions.

Results published in the August 11, 2014, online edition of the journal Nature Chemistry revealed that these compounds induced coupled chloride anion and sodium cation transport in both liposomal models and cells, and promoted cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels prevented this effect.

“We have demonstrated that this mechanism is viable, that this idea that has been around for over two decades is scientifically valid, and that is exciting,” said contributing author Dr. Jonathan L. Sessler, professor of chemistry at the University of Texas, Austin. “We were able to show sodium is really going in, chloride is really going in. There is now, I think, very little ambiguity as to the validity of this two-decades-old hypothesis. We have shown that this mechanism of chloride influx into the cell by a synthetic transporter does indeed trigger apoptosis. This is exciting because it points the way towards a new approach to anticancer drug development.”

The synthetic molecules described in the current study induce programmed cell death in both cancerous and healthy cells. To be of any value in treating cancer, a version of a chloride anion transporter will have to be developed that acts only on cancer cells.

Related Links:

The University of Texas, Austin


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.