Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

By LabMedica International staff writers
Posted on 22 Mar 2015
Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening.

Drug discovery and development have long been hampered by high failure rates attributed to the reliance on non-human animal models employed during safety and efficacy testing. A fundamental problem in this inefficient process is that non-human animal models cannot adequately represent human biology.

To circumvent the physiological differences inherent in animal model systems, investigators at the University of California, Berkeley (USA) developed a human tissue-based model system using heart cells derived from selectively manipulated human pluripotent stem cells. The cells were induced to grow in a silicon chip device that contained a three-dimensional culture scaffold that was comparable to the geometry and spacing of connective tissue fiber in a human heart. Heart cells were loaded into the chip in multiple layers aligned in a single direction. Microfluidic channels on either side of the growth area served as models for blood vessels, mimicking the exchange by diffusion of nutrients and drugs with human tissue.

Results published in the March 9, 2015, edition of the journal Scientific Reports revealed that within 24 hours after the heart cells were loaded onto the chip, they began beating on their own at a normal physiological rate of 55 to 80 beats per minute. The culture system was able to keep human induced pluripotent stem cell derived cardiac tissue viable and functional over a period of several weeks.

The system was tested by monitoring the reaction of the heart cells to four different cardiovascular drugs: isoproterenol, E-4031, verapamil, and metoprolol. Changes in the heart tissue’s beat rate were monitored to gauge the response to the compounds. The experiment was considered to be a success when—after half an hour of exposure to isoproterenol, a drug used to treat bradycardia—the heart tissue beat rate increased from 55 to 124 beats per minute.

The "heart-on-a-chip" project was sponsored in part by the [US] National Institutes of Health's Tissue Chip for Drug Screening Initiative, an interagency collaboration for the development of three-dimensional human tissue chips that model the structure and function of human organs.

“Ultimately, these chips could replace the use of animals to screen drugs for safety and efficacy,” said senior author Dr. Kevin E. Healy, professor of bioengineering at the University of California, Berkeley. “Using a well-designed model of a human organ could significantly cut the cost and time of bringing a new drug to market.”

Related Links:
University of California, Berkeley



Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Coagulation Analyzer
CS-2400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.