We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

By LabMedica International staff writers
Posted on 22 Mar 2015
Print article
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).
Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening.

Drug discovery and development have long been hampered by high failure rates attributed to the reliance on non-human animal models employed during safety and efficacy testing. A fundamental problem in this inefficient process is that non-human animal models cannot adequately represent human biology.

To circumvent the physiological differences inherent in animal model systems, investigators at the University of California, Berkeley (USA) developed a human tissue-based model system using heart cells derived from selectively manipulated human pluripotent stem cells. The cells were induced to grow in a silicon chip device that contained a three-dimensional culture scaffold that was comparable to the geometry and spacing of connective tissue fiber in a human heart. Heart cells were loaded into the chip in multiple layers aligned in a single direction. Microfluidic channels on either side of the growth area served as models for blood vessels, mimicking the exchange by diffusion of nutrients and drugs with human tissue.

Results published in the March 9, 2015, edition of the journal Scientific Reports revealed that within 24 hours after the heart cells were loaded onto the chip, they began beating on their own at a normal physiological rate of 55 to 80 beats per minute. The culture system was able to keep human induced pluripotent stem cell derived cardiac tissue viable and functional over a period of several weeks.

The system was tested by monitoring the reaction of the heart cells to four different cardiovascular drugs: isoproterenol, E-4031, verapamil, and metoprolol. Changes in the heart tissue’s beat rate were monitored to gauge the response to the compounds. The experiment was considered to be a success when—after half an hour of exposure to isoproterenol, a drug used to treat bradycardia—the heart tissue beat rate increased from 55 to 124 beats per minute.

The "heart-on-a-chip" project was sponsored in part by the [US] National Institutes of Health's Tissue Chip for Drug Screening Initiative, an interagency collaboration for the development of three-dimensional human tissue chips that model the structure and function of human organs.

“Ultimately, these chips could replace the use of animals to screen drugs for safety and efficacy,” said senior author Dr. Kevin E. Healy, professor of bioengineering at the University of California, Berkeley. “Using a well-designed model of a human organ could significantly cut the cost and time of bringing a new drug to market.”

Related Links:
University of California, Berkeley


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Laboratory Electric Thermostat
DNP-9025A
New
Chlamydia Test Kit
CHLAMYTOP

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.