We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Liquid Nanolaser Technology May Be Used for Lab-on-a-Chip Diagnostic Applications

By LabMedica International staff writers
Posted on 07 Jul 2015
Print article
Image: Tunable lattice plasmon lasers offer prospects to enhance and detect weak physical and chemical processes on the nanoscale in real time (Photo courtesy of Northwestern University).
Image: Tunable lattice plasmon lasers offer prospects to enhance and detect weak physical and chemical processes on the nanoscale in real time (Photo courtesy of Northwestern University).
Improvements in nanoscale laser technology enable biotechnology researchers to envisage the use of such a device as the focal point for "lab on a chip" diagnostic applications.

Investigators at Northwestern University (Evanston, IL, USA) described an approach to achieve real-time, tunable lattice plasmon laser capability in the April 20, 2015, online edition of the journal Nature Communications. Their tunable liquid-based laser was constructed from arrays of gold nanoparticles and liquid gain materials.

Optically pumped arrays of gold nanoparticles surrounded by liquid dye molecules exhibited lasing emission that could be tuned as a function of the dielectric environment. Wavelength-dependent time-resolved experiments showed distinct lifetime characteristics below and above the lasing threshold. By integrating gold nanoparticle arrays within microfluidic channels and flowing in liquid gain materials with different refractive indices, the investigators achieved dynamic tuning of the plasmon lasing wavelength.

Nanoscale lasers can be mass-produced with emission wavelengths over the entire gain bandwidth of the dye employed. Thus, the same gold nanoparticle array can exhibit lasing wavelengths that can be tuned over 50 nanometers, from 860 to 910 nanometers, simply by changing the solvent used to dissolve the dye.

“Our study allows us to think about new laser designs and what could be possible if they could actually be made,” said Dr. Teri W. Odom, professor of chemistry at Northwestern University. “My lab likes to go after new materials, new structures, and new ways of putting them together to achieve things not yet imagined. We believe this work represents a conceptual and practical engineering advance for on-demand, reversible control of light from nanoscopic sources.”

Related Links:

Northwestern University


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Liquid Based Cytology Production Machine
LBP-4032
New
Tabletop Centrifuge
Mikro 185

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.