Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Computer Models Help Explain How Tumors Evolve

By LabMedica International staff writers
Posted on 09 Sep 2015
Cancer researchers used computer modeling to create three-dimensional simulations of tumors developing over time in order to explain why the tumor mass is almost exclusively composed of one type of cell while a similar mass of normal tissue would be composed of many cell types.

Most cancers in humans are large, measuring centimeters in diameter, and composed of many billions of cells. More...
An equivalent mass of normal cells would be highly heterogeneous as a result of the mutations that occur during each cell division. What is remarkable about cancers is that virtually every cell within a large tumor often contains the same core set of genetic alterations, with heterogeneity confined to mutations that emerge late during tumor growth. How such alterations expand within the spatially constrained three-dimensional architecture of a tumor, and come to dominate a large, pre-existing lesion, has been unclear.

An international team of investigators from the University of Edinburgh (United Kingdom), Harvard University (Cambridge, MA, USA), and Johns Hopkins University (Baltimore, MD, USA) developed computer models to describe how short-range dispersal and cell turnover could account for rapid cell mixing inside the tumor during its evolution.

The investigators reported in the August 26, 2015, online edition of the journal Nature that a small selective advantage of a single cell within a large tumor would allow the descendants of that cell to replace the precursor mass in a clinically relevant time frame. They also demonstrated that the same mechanisms could be responsible for the rapid onset of resistance to chemotherapy.

The investigators stated that their model not only provided insights into spatial and temporal aspects of tumor growth, but also suggested that targeting short-range cellular migratory activity could have marked effects on tumor growth rates.

First author Dr. Bartlomiej Waclaw, a researcher in the school of physics and astronomy at the University of Edinburgh, said, "Computer modeling of cancer enables us to gain valuable insight into how this complex disease develops over time and in three dimensions."

Related Links:

University of Edinburgh
Harvard University
Johns Hopkins University



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.