We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Computer Simulations for Improved Liposome Design

By LabMedica International staff writers
Posted on 25 Oct 2015
Print article
Image: A liposome, stabilized by anchoring its membrane to a solid cord with polymeric tethers, could provide a more stable carrier for nanoparticles (Photo courtesy of ACS Nano: http://pubs.acs.org/doi/10.1021/acsnano.5b03439)
Image: A liposome, stabilized by anchoring its membrane to a solid cord with polymeric tethers, could provide a more stable carrier for nanoparticles (Photo courtesy of ACS Nano: http://pubs.acs.org/doi/10.1021/acsnano.5b03439)
The extensive use of computer simulations has enabled researchers to design an improved class of liposomes for use in targeted delivery of toxic chemotherapeutic agents.

Liposomes are vesicles comprising a hydrophilic core enclosed by a membrane that contains mostly phospholipids and sometimes one or more types of proteins. The lipid membrane shields any material that it contains (such as a drug or nucleic acid) from interaction with the blood, while the proteins recognize and interact with complementary proteins on the membrane of a diseased or dysfunctional cell.

The primary weakness of the liposome delivery method is linked to the relative fragility of the vesicle. Studies of this model of delivery have shown that in many cases less than 10% of the drugs transported by liposomes are delivered to tumor cells. Often, the liposome breaks open before it reaches its target, and the drug is absorbed into the body's organs, including the liver and spleen, resulting in toxic side effects.

Investigators at Carnegie Mellon University (Pittsburgh, PA, USA) and colleagues at the University of California, Davis (USA) and the Colorado School of Mines (Golden, CO, USA) developed computer simulations that enabled them to propose designs for more stable liposomes.

In a paper published in the September 18, 2015, online edition of the journal ACS Nano they proposed the design for a nanoparticle carrier that combined three existing motifs into a single construct: a liposome that was stabilized by anchoring it to an enclosed solid core via extended polymeric tethers that were chemically grafted to the core and physisorb into the surrounding lipid membrane.

They suggested that such a design would exhibit several enticing properties, among them: (i) the anchoring would stabilize the liposome against a variety of external stresses, while preserving an aqueous compartment between core and membrane; (ii) the interplay of design parameters such as polymer length or grafting density would enforce strong constraints on nanoparticle size and hence ensures a high degree of uniformity; and (iii) the physical and chemical characteristics of the individual constituents would equip the construct with numerous functionalities that could be exploited in many ways.

"Even with current forms of targeted drug delivery, treatments like chemotherapy are still very brutal. We wanted to see how we could make targeted drug delivery better," said senior author Dr. Markus Deserno, professor of physics at Carnegie Mellon University.

Related Links:
Carnegie Mellon University
University of California, Davis
Colorado School of Mines


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.