We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Solid State NMR Reveals Heat Shock Protein's Molecular Structure

By LabMedica International staff writers
Posted on 26 Oct 2015
Print article
Image: Space-filling model of the alpha-B-crystallin protein. The hexameric subunit is indicated in color (Photo courtesy of Dr. Andi Mainz, Technical University of Munich).
Image: Space-filling model of the alpha-B-crystallin protein. The hexameric subunit is indicated in color (Photo courtesy of Dr. Andi Mainz, Technical University of Munich).
Image: Electron micrograph of beta-amyloid in the absence (left) and presence (right) of alpha-B-crystallin (Photo courtesy of Dr. Andi Mainz, Technical University of Munich).
Image: Electron micrograph of beta-amyloid in the absence (left) and presence (right) of alpha-B-crystallin (Photo courtesy of Dr. Andi Mainz, Technical University of Munich).
A team of German proteomics researchers has established the molecular structure of the small heat shock protein alpha-B-crystallin, a finding that is expected to aid in the search for drugs to treat illnesses such as Alzheimer's disease, which are characterized by toxic protein clumping.

Heat shock proteins (HSP) are a family of proteins—of which alpha-B-crystallin is a member—that are produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, but are now known to also be expressed during other types of stress including exposure to cold, UV light, and during wound healing or tissue remodeling. Many members of this group perform a chaperone function by stabilizing new proteins to ensure correct folding or by helping to refold proteins that were damaged by cell stress.

Mechanistic details of human alpha-B-crystallin, particularly in its client-bound state, have been difficult to obtain, owing to the high molecular weight and the heterogeneity of these complexes.

Investigators at the Technical University of Munich (Germany) and the Helmholtz Zentrum Muenchen (Munich, Germany) used state-of-the-art solid-state NMR (nuclear magnetic resonance) spectroscopy to study the structure of alpha-B-crystallin bound to Alzheimer's disease Abeta1–40 peptide and, in a separate study, to the enzyme lysozyme.

They reported in the October 12, 2015, online edition of the journal Nature Structural Molecular Biology that the alpha-B-crystallin complex was assembled from asymmetric building blocks. Interaction studies demonstrated that the fibril-forming Alzheimer's disease Abeta1–40 peptide preferentially bound to a hydrophobic edge of the central beta-sandwich of alpha-B-crystallin. In contrast, the amorphously aggregating client lysozyme was captured by the partially disordered N-terminal domain of alpha-B-crystallin. These results implied that alpha-B-crystallin used its inherent structural plasticity to expose distinct binding interfaces and thus interact with a wide range of structurally variable clients.

Senior author Dr. Bernd Reif, professor of chemistry at the Technical University of Munich, said, "Alpha-B-crystallin exists in various different forms comprising 24, 28, or 32 subunits that are permanently being swapped. In addition, it has a large molecular weight. These factors make structure analysis very difficult."

Related Links:

Technical University of Munich
Helmholtz Zentrum Muenchen


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.