Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Solid State NMR Reveals Heat Shock Protein's Molecular Structure

By LabMedica International staff writers
Posted on 26 Oct 2015
Print article
Image: Space-filling model of the alpha-B-crystallin protein. The hexameric subunit is indicated in color (Photo courtesy of Dr. Andi Mainz, Technical University of Munich).
Image: Space-filling model of the alpha-B-crystallin protein. The hexameric subunit is indicated in color (Photo courtesy of Dr. Andi Mainz, Technical University of Munich).
Image: Electron micrograph of beta-amyloid in the absence (left) and presence (right) of alpha-B-crystallin (Photo courtesy of Dr. Andi Mainz, Technical University of Munich).
Image: Electron micrograph of beta-amyloid in the absence (left) and presence (right) of alpha-B-crystallin (Photo courtesy of Dr. Andi Mainz, Technical University of Munich).
A team of German proteomics researchers has established the molecular structure of the small heat shock protein alpha-B-crystallin, a finding that is expected to aid in the search for drugs to treat illnesses such as Alzheimer's disease, which are characterized by toxic protein clumping.

Heat shock proteins (HSP) are a family of proteins—of which alpha-B-crystallin is a member—that are produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, but are now known to also be expressed during other types of stress including exposure to cold, UV light, and during wound healing or tissue remodeling. Many members of this group perform a chaperone function by stabilizing new proteins to ensure correct folding or by helping to refold proteins that were damaged by cell stress.

Mechanistic details of human alpha-B-crystallin, particularly in its client-bound state, have been difficult to obtain, owing to the high molecular weight and the heterogeneity of these complexes.

Investigators at the Technical University of Munich (Germany) and the Helmholtz Zentrum Muenchen (Munich, Germany) used state-of-the-art solid-state NMR (nuclear magnetic resonance) spectroscopy to study the structure of alpha-B-crystallin bound to Alzheimer's disease Abeta1–40 peptide and, in a separate study, to the enzyme lysozyme.

They reported in the October 12, 2015, online edition of the journal Nature Structural Molecular Biology that the alpha-B-crystallin complex was assembled from asymmetric building blocks. Interaction studies demonstrated that the fibril-forming Alzheimer's disease Abeta1–40 peptide preferentially bound to a hydrophobic edge of the central beta-sandwich of alpha-B-crystallin. In contrast, the amorphously aggregating client lysozyme was captured by the partially disordered N-terminal domain of alpha-B-crystallin. These results implied that alpha-B-crystallin used its inherent structural plasticity to expose distinct binding interfaces and thus interact with a wide range of structurally variable clients.

Senior author Dr. Bernd Reif, professor of chemistry at the Technical University of Munich, said, "Alpha-B-crystallin exists in various different forms comprising 24, 28, or 32 subunits that are permanently being swapped. In addition, it has a large molecular weight. These factors make structure analysis very difficult."

Related Links:

Technical University of Munich
Helmholtz Zentrum Muenchen


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mumps Virus Test
ZEUS ELISA Mumps IgG Test System
New
TETANUS Test
TETANUS VIRCLIA IgG MONOTEST

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.