We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Viscoelastic Hydrogels Promote Bone Formation in 3D Cell Cultures

By LabMedica International staff writers
Posted on 15 Dec 2015
Print article
Image: Scanning electron microscope image of the cross section of a fast relaxing hydrogel containing mesenchymal stem cells. The cells differentiated into osteoblasts and integrated in the matrix (Photo courtesy of Harvard University).
Image: Scanning electron microscope image of the cross section of a fast relaxing hydrogel containing mesenchymal stem cells. The cells differentiated into osteoblasts and integrated in the matrix (Photo courtesy of Harvard University).
Stem cell researchers have devised a viscoelastic hydrogel matrix that encourages stem cells grown in three-dimensional culture to differentiate into bone tissue, which has promising applications in the realm of bone regeneration, growth, and healing.

Viscoelasticity is a molecular rearrangement. When stress is applied to a viscoelastic material such as a polymer, some areas of the material's long polymer chains change positions. This movement or rearrangement is called creep. Polymers remain a solid material even when these parts of their chains are rearranging in order to accompany the stress, and as this occurs, it creates a back stress in the material. When the back stress is the same magnitude as the applied stress, the material no longer creeps. When the original stress is taken away, the accumulated back stresses will cause the polymer to return to its original form. The material creeps, which gives the prefix visco-, and the material fully recovers, which gives the suffix- elasticity.

Investigators at Harvard University (Cambridge, MA, USA) developed hydrogels for three-dimensional culture with different stress relaxation responses. They reported in the November 30, 2015, online edition of the journal Nature Materials that these types of materials enhanced cell spreading, proliferation, and the osteogenic differentiation of mesenchymal stem cells (MSCs) in cultures with gels with faster relaxation rates. Strikingly, MSCs formed a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels. The effects of stress relaxation were mediated by adhesion-ligand binding, actomyosin contractility, and mechanical clustering of adhesion ligands.

"This work both provides new insight into the biology of regeneration, and is allowing us to design materials that actively promote tissue regeneration," said senior author Dr. David Mooney, professor of bioengineering at Harvard University. "In addition to introducing a new concept to the fields of mechanobiology and regenerative medicine, I expect this work will lead to an explosion of new ideas and research to examine how a number of other material mechanical properties influence cell behavior."

The Harvard University Office of Technology Development has filed a patent application and is actively exploring commercial opportunities for the viscoelastic cell culture technology.

Related Links:

Harvard University


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
Dehydroepiandrosterone Assay
DHEA ELISA
New
MTHFR Mutation Test
REALQUALITY THROMBO MTHFR

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.