We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rare Mutation Increases Both HDL-Cholesterol and Heart Disease Risk

By LabMedica International staff writers
Posted on 20 Mar 2016
Print article
Image: HDL can remove cholesterol from arteries and shuttle it to the liver where it is eliminated, but this process can be disrupted in certain circumstances (such as deficiency of SCARB1) (Photo courtesy of Dr. Daniel Rader, University of Pennsylvania).
Image: HDL can remove cholesterol from arteries and shuttle it to the liver where it is eliminated, but this process can be disrupted in certain circumstances (such as deficiency of SCARB1) (Photo courtesy of Dr. Daniel Rader, University of Pennsylvania).
Increased risk of atherosclerosis has been attributed to a rare mutation in the gene that encodes the major liver cell receptor for HDL (high-density lipoprotein).

Scavenger receptor class B, type I (SR-BI), which is encoded by the SCARB1 gene, is an integral membrane protein found in numerous cell types, including those in the liver and adrenal glands. It is best known for its role in facilitating the uptake of cholesteryl-esters from HDL in the liver. This process drives the movement of cholesterol from peripheral tissues towards the liver for excretion and is a protective mechanism against the development of atherosclerosis.

Cardiovascular disease investigators at the University of Pennsylvania (Philadelphia, USA) focused on SCARB1 after finding that mice with depleted SCARB1 (SR-BI knockout mice) had markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and coronary heart disease risk in humans was not clear.

To clarify the link between SCARB1 and HDL-C levels the investigators conducted targeted DNA sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels. As a consequence, they identified a homozygote for a loss-of-function variant, in which leucine replaced proline 376 (P376L), in SCARB1. The mutant gene coded for a nonfunctional form of the SR-BI receptor.

The investigators reported in the March 11, 2016, issue of the journal Science that inactive SR-BI blocked HDL-C uptake by liver cells from an individual with two copies of the mutant SCARB1 gene, in induced pluripotent stem cells derived from this individual and converted into liver cells, and in SCARB1 knockout mice. In addition, large population-based studies revealed that subjects who were heterozygous carriers of the P376L variant had significantly increased levels of plasma HDL-C but also an increased risk of coronary heart disease.

“This mutation prevents the receptor from getting to the cell surface where it needs to be situated in order to bind and take up HDL,” said senior author Dr. Daniel J. Rader, professor of genetics at the University of Pennsylvania. “This disruption in the receptor’s job is due to mistakes in its folding and processing during protein synthesis. Our results indicate that some causes of raised HDL actually increase risk for heart disease. This is the first demonstration of a genetic mutation that raises HDL but increases risk of heart disease.”

“The work demonstrates that the protective effects of HDL are more dependent upon how it functions than merely how much of it is present,” said Dr. Rader. “We still have a lot to learn about the relationship between HDL function and heart disease risk. Our results indicate that some causes of raised HDL actually increase risk for heart disease. Eventually we may want to perform genetic testing in persons with high HDL to make sure they do not have mutations—like this one—that raise HDL but does not protect against, or may even increase, risk for heart disease.”

Related Links:
University of Pennsylvania


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.