We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Study Identifies Mechanism Underlying a Form of Sensory Nerve Damage

By LabMedica International staff writers
Posted on 27 Apr 2016
Print article
Image: Altered caudal fin morphology following paclitaxel injection into larval zebrafish at 2 dpf. (A) Morphological changes (arrows) in the fin fold 1 hour after injection with 10 µM paclitaxel (insets show higher magnification). (B) Fin damage (arrows) 3 hour after paclitaxel injection. (C) Vehicle controls with undamaged fins 4 hour postinjection. (Scale bar, 200 µm.) hpinj = hours postinjection. (Image courtesy of Lisse TS et al, 2016, PNAS.)
Image: Altered caudal fin morphology following paclitaxel injection into larval zebrafish at 2 dpf. (A) Morphological changes (arrows) in the fin fold 1 hour after injection with 10 µM paclitaxel (insets show higher magnification). (B) Fin damage (arrows) 3 hour after paclitaxel injection. (C) Vehicle controls with undamaged fins 4 hour postinjection. (Scale bar, 200 µm.) hpinj = hours postinjection. (Image courtesy of Lisse TS et al, 2016, PNAS.)
Researchers have discovered a mechanism that underlies induction of peripheral neuropathy (PN) by the chemotherapeutic agent paclitaxel, raising the prospects for developing treatments for this and possibly also for certain other forms of PN. The work may also lead to companion diagnostics to identify patients who would benefit from these new therapies.

The study was led by Sandra Rieger, PhD, of Mount Desert Island Biological Laboratory (Bar Harbor, ME, USA). "Our goal is to develop treatments that activate the repair and regeneration of damaged tissues," said Kevin Strange, PhD, president, MDI Biological Laboratory, "Sandra Rieger's research has advanced that mission.”

Peripheral nerve damage is a common condition (e.g. ~8 million people are affected in the US) that causes increasing pain and numbness and/or tingling in the hands and/or feet. Lack of understanding of underlying mechanisms has held back development of treatments. Drugs exist for the treatment of symptoms (e.g. pain relievers), but not for the condition itself, which can be caused by chemotherapy, diabetes, traumatic injury, heredity, and other conditions.

"The general thinking is that no single drug can be effective for the treatment of all PNs, which stem from multiple causes," said Dr. Rieger, "But our research indicates that there may potentially be a common underlying mechanism for some neuropathies affecting the sensory nervous system that could be manipulated with drugs targeting a single enzyme."

Dr.Rieger and other scientists at the institution's Davis Center for Regenerative Medicine study tissue repair, regeneration, and aging in a diverse range of organisms that have robust mechanisms to repair and regenerate lost and damaged tissues. In the new study, zebrafish were exposed to paclitaxel, used to treat ovarian, breast, lung, pancreatic, and other cancers. Paclitaxel-induced PN affects the majority of treated patients; however, those who are most severely affected (~30%) have to terminate chemotherapy early or reduce the dose, which may hinder cancer survival.

The researchers developed a larval zebrafish model of PN because the embryos develop rapidly and larval fish are translucent, ideal for studying progression of nerve degeneration in live animals. The results showed that paclitaxel induced degeneration of sensory nerve endings by damaging the epidermis (outer layer of skin), which is innervated by free sensory nerve endings that establish direct contact with skin cells. The degeneration was determined to be caused by perturbations in the epidermis due to an increase in the enzyme matrix-metalloproteinase 13 (MMP-13), which degrades the collagen between the cells. Increased MMP-13 activity may be triggered by oxidative stress, a hallmark of diabetic PN.

The zebrafish were treated with pharmacological agents that reduce MMP-13 activity, with the result that skin defects were improved and chemotherapy-induced nerve damage was reversed. Additional research will focus on effect of MMP-13 on PN in mammalian models. Studies are also underway in collaboration with Mayo Clinic (Rochester, MN, USA) to test the clinical relevance of these findings in humans. PN treatment using MMP-13- targeting compounds is now the subject of a provisional patent by MDI Biological Laboratory.

MMP-13 over-activation has also been linked to other disease conditions, including tendon injury, intestinal inflammatory, and cancer, suggesting that drugs developed to treat PN may yield other health benefits as well.

The study, by Lisse TS et al, was published March 28, 2016, in the journal Proceedings of the National Academy of Sciences.

Related Links:
Mount Desert Island Biological Laboratory

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
HIV Test
Anti-HIV (1/2) Rapid Test Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.