We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Combining Genomics and Proteomics Yields Insights into Growth of Ovarian Cancer

By LabMedica International staff writers
Posted on 12 Jul 2016
Print article
Image: A photomicrograph of a thin section from an ovarian carcinoma (Photo courtesy of Wikimedia Commons).
Image: A photomicrograph of a thin section from an ovarian carcinoma (Photo courtesy of Wikimedia Commons).
Cancer researchers have combined genomic and proteomic data in order to better understand the factors that drive the growth and spread of ovarian cancer.

Ovarian cancer reportedly accounts for 3% of all cancers in women and is the fifth leading cause of cancer deaths among women in the USA. In a new approach to resolving the factors that drive growth of ovarian cancer, investigators at Johns Hopkins University (Baltimore, MD, USA) and the Pacific Northwest National Laboratory (Richland, WA, USA) integrated proteomic measurements with published genomic data to yield a number of new insights into the disease.

The investigators performed comprehensive mass-spectrometry-based proteomic characterization of 169 high-grade serous carcinomas (HGSCs) that had been analyzed previously by The Cancer Genome Atlas (Bethesda, MD, USA), a comprehensive and coordinated effort to accelerate the understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.

Results published in the June 29, 2016, online edition of the journal Cell identified 9,600 proteins in all the tumors, among which were 3,586 proteins common to all 169 tumor samples. Alterations in segments of chromosomes 2, 7, 20, and 22 were shown to cause changes in abundance of more than 200 of these proteins. Many of those 200 proteins were found to be involved in cell movement and immune system function, processes implicated in cancer progression.

"Correlating our data with clinical outcomes is the first step toward the eventual ability to predict outcomes that reflect patient survival, with potential applications for precision medicine and new targets for pharmaceutical interventions," said contributing author Dr. Daniel W. Chan, professor of pathology and oncology at Johns Hopkins University. "With this knowledge, researchers expect to be better able to identify the biological factors defining the 70% of ovarian cancer patients who suffer from the most malignant form of ovarian cancer, called high-grade serous carcinoma. But just like anything in medicine, clinical validation will be a long and rigorous process."

"Historically, cancer has been looked at as a disease of the genome," said senior author Dr. Karin Rodland, chief scientist for biomedical research at the Pacific Northwest National Laboratory. "But that genome has to express itself in functional outcomes, and that is what the proteomic data add, because proteins are what get the actual work of the genome done. By comparing data for overlapping patient samples and finding comparable measurements of protein analysis at both institutions, we think our findings indicate excellent scientific rigor and reproducibility."

Related Links:
Johns Hopkins University
Pacific Northwest National Laboratory
The Cancer Genome Atlas
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Newborn Screening Test
NeoMass AAAC 3.0

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.