We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Statins Slow Growth of Cancers with p53 Structural Mutations

By LabMedica International staff writers
Posted on 08 Feb 2017
Print article
Image: Atorvastatin bound to HMG-CoA reductase (Photo courtesy of Wikimedia Commons).
Image: Atorvastatin bound to HMG-CoA reductase (Photo courtesy of Wikimedia Commons).
Cancer researchers have demonstrated the ability of cancer-lowering statin drugs to slow the growth of certain types of cancers with p53 mutations.

Most cancers fail to propagate unless the p53 gene is inactivated through mutation, or if the p53 protein becomes inactivated. Investigators at the University of Kansas Medical Center looked for chemical compounds that could inhibit the activity of structurally mutated p53 proteins that can accelerate cancer progression, while not harming proteins produced by healthy p53 genes.

Toward this end, the investigators screened nearly 9,000 compounds - including 2,400 that were [U.S.] Food and Drug Administration-approved drugs – to identify any that might degrade mutant p53.

The investigators reported in the November 2016 issue of Nature Cell Biology that statins, cholesterol-lowering drugs such as Lipitor (atorvastatin), Crestor (rosuvastatin) and Mevacor (lovastatin), were degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. The statins impacted only structurally mutated (misfolded) p53, as opposed to p53 mutated at the site of DNA binding.

Statins act by competitively inhibiting the enzyme HMG-CoA reductase, the first committed enzyme of the mevalonate pathway. Because statins are similar in structure to HMG-CoA on a molecular level, they fit into the enzyme's active site and compete with the native substrate (HMG-CoA). This competition reduces the rate by which HMG-CoA reductase is able to produce mevalonate, the next molecule in the cascade that eventually produces cholesterol. By inhibiting HMG-CoA reductase, statins block the pathway for synthesizing cholesterol in the liver.

In the current study, the investigators found that specific reduction of mevalonate-5-phosphate by statins induced CHIP (C terminus of HSC70-Interacting Protein) ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutated p53 by impairing interaction of this protein with DNAJA1 (DNAJ heat shock protein family (Hsp40) member A1). DNAJA1 a member of the DNAJ family of proteins, which act as heat shock protein 70 co-chaperones. Heat shock proteins facilitate protein folding, trafficking, prevention of aggregation, and proteolytic degradation. Members of this family are characterized by a highly conserved N-terminal J domain, which mediates the interaction with heat shock protein 70 to recruit substrates and regulate ATP hydrolysis activity. Knockdown of DNAJA1 induced CHIP-mediated mutated p53 degradation, while its overexpression prevented statin-induced degradation of this protein.

In a study in which mice carrying human tumors expressing mutant p53, were treated with high doses of statins for 21 days, it was found that the tumors grew poorly in mice treated with statins compared to the controls, and that the statins worked only on structurally mutated p53, as opposed to p53 mutated at the site of DNA binding.

"We found that only the structural mutation is affected," said senior author Dr. Tomoo Iwakuma, associate professor of cancer biology at the University of Kansas Medical Center. "Which explains why clinical studies with statins were inconclusive. Mutant p53 makes human cancer cells more metastatic and resistant to chemotherapy. That is a primary reason to get rid of it -- to improve survival in cancer patients."

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.