We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cryomicroscopy Enhances Mapping of Cystic Fibrosis Protein

By LabMedica International staff writers
Posted on 05 Apr 2017
Print article
Image: The molecular structure of the human cystic fibrosis protein, which controls the flow of crucial ions in and out of cells (Photo courtesy of the Laboratory of Membrane Biology and Biophysics at The Rockefeller University).
Image: The molecular structure of the human cystic fibrosis protein, which controls the flow of crucial ions in and out of cells (Photo courtesy of the Laboratory of Membrane Biology and Biophysics at The Rockefeller University).
A recent paper detailed the three-dimensional (3D) structure of cystic fibrosis transmembrane conductance regulator, the protein responsible for the genetic disorder cystic fibrosis (CF).

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that uniquely functions as an ion channel. Investigators at The Rockefeller University used electron cryomicroscopy (cryo-EM) to determine the three-dimensional (3D) structure of dephosphorylated human CFTR at a resolution of 3.9 Angstroms.

Researchers have historically relied on NMR and X-ray diffraction techniques to determine the structures of molecular complexes and proteins that play a role in the causes of various disease states. Structural information about a variety of medically important proteins and drugs has been obtained by these methods. Cryo-EM is a complementary analytical technique that provides near-atomic resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional (3D) model of the sample.

Results published in the March 23, 2017, issue of the journal Cell revealed that the structure of human CFTR was quite similar to that determined previously for the zebrafish. This close resemblance reinforced its relevance for understanding CFTR function. The human CFTR structure generated by this study revealed a previously unresolved helix belonging to the R domain docked inside the intracellular vestibule, precluding channel opening. In addition, the three-dimensional (3D) map showed a feature distinguishing CFTR from all other ABC transporters: the helix-loop transition in transmembrane helix eight, which likely forms the structural basis for CFTR’s channel function.

"With these detailed new reconstructions, we can begin to understand how this protein functions normally, and how errors within it cause cystic fibrosis," said senior author Dr. Jue Chen, professor of membrane biology and biophysics at The Rockefeller University. "We now know that the conclusions we drew from our previous work in zebrafish also apply to us."

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Tabletop Centrifuge
Mikro 185
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.