Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Study Results May Help Improve Cancer Immunotherapy

By LabMedica International staff writers
Posted on 29 Jun 2017
Cancer researchers have shown how the activity of a specific protein enables regulatory T-cells (Tregs) to protect tumors from the immune system's natural tracking and killing response.

Tregs are a barrier to anti-tumor immunity. The protein Neuropilin-1 (Nrp1) is required to maintain Treg stability and function. NRP1 is a membrane-bound co-receptor to a tyrosine kinase receptor for both vascular endothelial growth factor (VEGF) and semaphorin family members. NRP1 plays versatile roles in angiogenesis, axon guidance, cell survival, migration, and invasion and has been implicated in the vascularization and progression of cancers. NRP1 expression has been shown to be elevated in a number of human patient tumor samples, including brain, prostate, breast, colon, and lung cancers and NRP1 levels are positively correlated with metastasis.

Investigators at the University of Pittsburgh School of Medicine (PA, USA) sought to identify the basis for Tregs' Nrp1 dependency and the key drivers of Treg fragility. This information could help to improve immunotherapy for human cancers.

The investigators worked with a genetically engineered mouse model in which the Nrp1 gene was deleted in half the Treg cell population. They reported in the June 1, 2017, issue of the journal Cell that that a high proportion of Tregs lacking Nrp1 produced interferon-gamma (IFNgamma), which drove the fragility of surrounding wild-type Tregs, boosted anti-tumor immunity, and facilitated tumor clearance. In contrast, a high percentage of Tregs with functioning NRP1 correlated with poor prognosis in melanoma and head and neck squamous cell carcinoma.

"What we have shown in the current study is that in mice, Nrp1 expression by Tregs is required to maintain their ability to prevent the immune system from clearing the tumor. Interestingly, when Tregs lose Nrp1, they not only fail to suppress, they also become active participants in the anti-tumor immune response," said senior author Dr. Dario Vignali, professor of immunology at the University of Pittsburgh School of Medicine. "Intriguingly, we also found that in cancer patients who had a poor prognosis, the Nrp1-expressing Treg subset was much higher, suggesting that the findings could apply to humans as well."

"While we thought that IFNgamma might impact the function of Tregs and thus influence immunotherapy outcome, the magnitude of the effect really took us by surprise," said Dr. Vignali. "When we deleted the receptor for IFNgamma in Tregs so they were no longer sensitive to the impact of IFNgamma, the immunotherapy drug had absolutely no effect. In essence, IFNgamma seems to make Tregs fragile so that they lose their suppressive function, but only in the tumor. Thus, maybe making Tregs fragile is a critical requirement for effective immunotherapy."

Related Links:
University of Pittsburgh School of Medicine


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Uric Acid and Blood Glucose Meter
URIT-10
New
Piezoelectric Micropump
Disc Pump
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.