We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Study Results May Help Improve Cancer Immunotherapy

By LabMedica International staff writers
Posted on 29 Jun 2017
Print article
Image: Three-dimensional photomicrograph of a tumor showing Tregs (green), blood vessels (red) and tumor matrix (blue) (Photo courtesy of the Vignali Laboratory, University of Pittsburgh School of Medicine).
Image: Three-dimensional photomicrograph of a tumor showing Tregs (green), blood vessels (red) and tumor matrix (blue) (Photo courtesy of the Vignali Laboratory, University of Pittsburgh School of Medicine).
Cancer researchers have shown how the activity of a specific protein enables regulatory T-cells (Tregs) to protect tumors from the immune system's natural tracking and killing response.

Tregs are a barrier to anti-tumor immunity. The protein Neuropilin-1 (Nrp1) is required to maintain Treg stability and function. NRP1 is a membrane-bound co-receptor to a tyrosine kinase receptor for both vascular endothelial growth factor (VEGF) and semaphorin family members. NRP1 plays versatile roles in angiogenesis, axon guidance, cell survival, migration, and invasion and has been implicated in the vascularization and progression of cancers. NRP1 expression has been shown to be elevated in a number of human patient tumor samples, including brain, prostate, breast, colon, and lung cancers and NRP1 levels are positively correlated with metastasis.

Investigators at the University of Pittsburgh School of Medicine (PA, USA) sought to identify the basis for Tregs' Nrp1 dependency and the key drivers of Treg fragility. This information could help to improve immunotherapy for human cancers.

The investigators worked with a genetically engineered mouse model in which the Nrp1 gene was deleted in half the Treg cell population. They reported in the June 1, 2017, issue of the journal Cell that that a high proportion of Tregs lacking Nrp1 produced interferon-gamma (IFNgamma), which drove the fragility of surrounding wild-type Tregs, boosted anti-tumor immunity, and facilitated tumor clearance. In contrast, a high percentage of Tregs with functioning NRP1 correlated with poor prognosis in melanoma and head and neck squamous cell carcinoma.

"What we have shown in the current study is that in mice, Nrp1 expression by Tregs is required to maintain their ability to prevent the immune system from clearing the tumor. Interestingly, when Tregs lose Nrp1, they not only fail to suppress, they also become active participants in the anti-tumor immune response," said senior author Dr. Dario Vignali, professor of immunology at the University of Pittsburgh School of Medicine. "Intriguingly, we also found that in cancer patients who had a poor prognosis, the Nrp1-expressing Treg subset was much higher, suggesting that the findings could apply to humans as well."

"While we thought that IFNgamma might impact the function of Tregs and thus influence immunotherapy outcome, the magnitude of the effect really took us by surprise," said Dr. Vignali. "When we deleted the receptor for IFNgamma in Tregs so they were no longer sensitive to the impact of IFNgamma, the immunotherapy drug had absolutely no effect. In essence, IFNgamma seems to make Tregs fragile so that they lose their suppressive function, but only in the tumor. Thus, maybe making Tregs fragile is a critical requirement for effective immunotherapy."

Related Links:
University of Pittsburgh School of Medicine

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Strips
11 Parameter Urine Strips
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.