We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




3D-Printed Heart Valve Models Mimic Physiology

By LabMedica International staff writers
Posted on 17 Jul 2017
Print article
Image: New 3D printing technologies allow researchers to create patient-specific heart valve models that mimic the physiological qualities of the real valves. This image shows the submerged valve during flow testing (Photo courtesy of the Georgia Institute of Technology).
Image: New 3D printing technologies allow researchers to create patient-specific heart valve models that mimic the physiological qualities of the real valves. This image shows the submerged valve during flow testing (Photo courtesy of the Georgia Institute of Technology).
Cardiovascular disease researchers used an advanced multi-material three-dimensional printing technique to create patient-specific heart valve models that mimic the physiological qualities of human valves.

Investigators at the Georgia Institute of Technology (Atlanta, USA) had shown previously that a metamaterial three-dimensional printing technique could be used to create patient-specific phantoms that mimicked the mechanical properties of biological tissue. In the current study, they aimed to use this methodology to develop a procedure simulation platform for in vitro transcatheter aortic valve replacement (TAVR). In addition, they evaluated the feasibility of using these three-dimensional printed mimics to quantitatively predict the occurrence, severity, and location of any degree of post-TAVR paravalvular leaks (PVL).

In conducting this retrospective study involving 18 patients who had undergone TAVR, patient-specific aortic root mimics were created using the three-dimensional printing technique combined with pre-TAVR computed tomography. CoreValve (self-expanding valve) prostheses were deployed in the mimics to simulate the TAVR procedure, from which post-TAVR aortic root strain was quantified in vitro. A novel index, the annular bulge index, was measured to assess the post-TAVR annular strain unevenness in the mimics.

Results published in the July 7, 2017, online edition of the journal JACC: Cardiovascular Imaging revealed that the maximum annular bulge index was significantly different among patient subgroups that had no PVL, trace-to-mild PVL, and moderate-to-severe PVL. Compared with other known PVL predictors, bulge index was the only significant predictor of moderate-severe PVL. Thus, in this proof-of-concept study, the investigators demonstrated the feasibility of using three-dimensional printed tissue-mimics to quantitatively assess post-TAVR aortic root strain in vitro.

"These three-dimensional printed valves have the potential to make a huge impact on patient care going forward," said contributing author Dr. Chuck Zhang, professor of industrial and systems engineering at the Georgia Institute of Technology. "Previous methods of using three-dimensional printers and a single material to create human organ models were limited to the physiological properties of the material used. Our method of creating these models using metamaterial design and multi-material three-dimensional printing takes into account the mechanical behavior of the heart valves, mimicking the natural strain-stiffening behavior of soft tissues that comes from the interaction between elastin and collagen, two proteins found in heart valves."

Related Links:
Georgia Institute of Technology

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Uric Acid and Blood Glucose Meter
URIT-10

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.