We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




3D-Printed Heart Valve Models Mimic Physiology

By LabMedica International staff writers
Posted on 17 Jul 2017
Print article
Image: New 3D printing technologies allow researchers to create patient-specific heart valve models that mimic the physiological qualities of the real valves. This image shows the submerged valve during flow testing (Photo courtesy of the Georgia Institute of Technology).
Image: New 3D printing technologies allow researchers to create patient-specific heart valve models that mimic the physiological qualities of the real valves. This image shows the submerged valve during flow testing (Photo courtesy of the Georgia Institute of Technology).
Cardiovascular disease researchers used an advanced multi-material three-dimensional printing technique to create patient-specific heart valve models that mimic the physiological qualities of human valves.

Investigators at the Georgia Institute of Technology (Atlanta, USA) had shown previously that a metamaterial three-dimensional printing technique could be used to create patient-specific phantoms that mimicked the mechanical properties of biological tissue. In the current study, they aimed to use this methodology to develop a procedure simulation platform for in vitro transcatheter aortic valve replacement (TAVR). In addition, they evaluated the feasibility of using these three-dimensional printed mimics to quantitatively predict the occurrence, severity, and location of any degree of post-TAVR paravalvular leaks (PVL).

In conducting this retrospective study involving 18 patients who had undergone TAVR, patient-specific aortic root mimics were created using the three-dimensional printing technique combined with pre-TAVR computed tomography. CoreValve (self-expanding valve) prostheses were deployed in the mimics to simulate the TAVR procedure, from which post-TAVR aortic root strain was quantified in vitro. A novel index, the annular bulge index, was measured to assess the post-TAVR annular strain unevenness in the mimics.

Results published in the July 7, 2017, online edition of the journal JACC: Cardiovascular Imaging revealed that the maximum annular bulge index was significantly different among patient subgroups that had no PVL, trace-to-mild PVL, and moderate-to-severe PVL. Compared with other known PVL predictors, bulge index was the only significant predictor of moderate-severe PVL. Thus, in this proof-of-concept study, the investigators demonstrated the feasibility of using three-dimensional printed tissue-mimics to quantitatively assess post-TAVR aortic root strain in vitro.

"These three-dimensional printed valves have the potential to make a huge impact on patient care going forward," said contributing author Dr. Chuck Zhang, professor of industrial and systems engineering at the Georgia Institute of Technology. "Previous methods of using three-dimensional printers and a single material to create human organ models were limited to the physiological properties of the material used. Our method of creating these models using metamaterial design and multi-material three-dimensional printing takes into account the mechanical behavior of the heart valves, mimicking the natural strain-stiffening behavior of soft tissues that comes from the interaction between elastin and collagen, two proteins found in heart valves."

Related Links:
Georgia Institute of Technology

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.