We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Method Described for Producing Polymersomes of Different Shapes

By LabMedica International staff writers
Posted on 15 Nov 2017
Print article
Image: Tubular shaped polymersomes - plastic nanoparticles that can encapsulate drugs (Photo courtesy of the University of New South Wales).
Image: Tubular shaped polymersomes - plastic nanoparticles that can encapsulate drugs (Photo courtesy of the University of New South Wales).
A team of Australian chemists recently described a novel method for conveniently producing polymersomes of different shapes and properties.

Polymersomes are similar to liposomes, which are vesicles formed from naturally occurring lipids. While having many of the properties of natural liposomes, polymersomes exhibit increased stability and reduced permeability. Furthermore, the use of synthetic polymers enables designers to manipulate the characteristics of the membrane and thus control permeability, release rates, stability, and other properties of the polymersome. However, exploiting the full potential of polymersomes has been hindered by a lack of versatile methods for shape control.

To ameliorate this situation, investigators at the University of New South Wales (Sydney, Australia) devised a supramolecular strategy to produce non-spherical polymersomes with anisotropic membranes from polymers bearing perylene aromatic side chains. Anisotropy is the property of being directionally dependent, which implies different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physical or mechanical properties.

The investigators showed that a range of non-spherical polymersome morphologies with anisotropic membranes could be obtained by exploiting hydrophobic directional aromatic interactions between perylene polymer units within the membrane structure.

Perylenes were chosen to provide the aromatic interactions in the system due to their strong tendency to aggregate in water, and how their aggregation behavior could easily be probed by means of UV–Vis and fluorescence spectroscopy. The key to this approach was to utilize the directional nature of aromatic supramolecular interactions in combination with their increased strength due to hydrophobicity as the self-assembled structure moved from an organic solvent (tetrahydrofuran (THF)) to water.

Results published in the November 1, 2017, online edition of the journal Nature Communications revealed that through concentration and solvent changes, it was possible to control the extent of solvation/desolvation of the aromatic perylene surfaces on the polymer, and ultimately introduce anisotropic membrane tension in the polymersome membrane structure, generating the observed ellipsoidal or tubular-shaped polymersomes. Extensive characterization of the polymersomes by means of spectroscopy and microscopy further revealed that not only did these polymersomes possess non-spherical shapes, but also unusual membrane properties.

"Our breakthrough means we can predictably make smart polymers that shift their shape according to the different conditions around them to form tiny ellipsoidal or tubular structures that can encapsulate drugs. We have preliminary evidence that these more natural-shaped plastic nanoparticles enter tumor cells more easily than spherical ones," said senior author Dr. Pall Thordarson, professor of chemistry at the University of New South Wales.

Related Links:
University of New South Wales

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.