We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Transcription Regulation Depends on Release from Chromatin

By LabMedica International staff writers
Posted on 09 May 2018
Print article
Image: The long non-coding RNA called A-ROD is only functional the moment it is released from chromatin into the nucleoplasm. At this transient phase, it can bring transcription factors to specific sites in DNA to enhance gene expression. After its complete release from chromatin, A-ROD is no longer active (Photo courtesy of Evgenia Ntini, Max Planck Institute for Molecular Genetics).
Image: The long non-coding RNA called A-ROD is only functional the moment it is released from chromatin into the nucleoplasm. At this transient phase, it can bring transcription factors to specific sites in DNA to enhance gene expression. After its complete release from chromatin, A-ROD is no longer active (Photo courtesy of Evgenia Ntini, Max Planck Institute for Molecular Genetics).
A team of German genome researchers has demonstrated that release from chromatin is a crucial functional aspect of long noncoding RNAs in transcription regulation of their target genes.

Long non-coding RNAs (lncRNAs) are considered to be non-protein coding transcripts longer than 200 nucleotides. This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study. Their name notwithstanding, long non-coding RNAs (lncRNAs) have been found to actually encode synthesis of small polypeptides that can fine-tune the activity of critical cellular components. LncRNAs are often enriched in the nucleus and at chromatin, but whether their dissociation from chromatin is important for their role in transcription regulation is unclear.

To better understand the link between lncRNAs and chromatin, investigators at the Max Planck Institute for Molecular Genetics (Berlin, Germany) grouped lncRNAs using epigenetic marks, expression, and strength of chromosomal interactions.

They reported in the April 24, 2018, online edition of the journal Nature Communications that lncRNAs transcribed from loci engaged in strong long-range chromosomal interactions were less abundant at chromatin, suggesting the release from chromatin was a crucial functional aspect of lncRNAs in transcription regulation of their target genes.

To gain mechanistic insight into this mechanism, they functionally validated the lncRNA A-ROD, which enhances DKK1 (Dickkopf-related protein 1) transcription via its nascent spliced released form. Detailed validation provided evidence that the regulatory effect was exerted by A-ROD at its release from the chromatin-associated site of transcription.

These findings provide evidence that the regulatory interaction required dissociation of A-ROD from chromatin, with target specificity having been established during the period of chromosomal proximity.

Related Links:
Max Planck Institute for Molecular Genetics

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
Lab Sample Rotator
H5600 Revolver

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.