We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Spider Silk Microparticle System Engineered for Anticancer Drugs

By LabMedica International staff writers
Posted on 25 Jun 2018
Print article
Image: Immune cells that ingested spider silk nanoparticles (in green). The endosomes – the part of the cell in which the nanoparticles release the vaccine – appear in blue (Photo courtesy of Bourquin Laboratory, University of Geneva).
Image: Immune cells that ingested spider silk nanoparticles (in green). The endosomes – the part of the cell in which the nanoparticles release the vaccine – appear in blue (Photo courtesy of Bourquin Laboratory, University of Geneva).
Engineered spider silk microparticles underlie a novel transport system for the delivery of immunotherapeutic drugs to critical stimulatory sites in the immune system.

The generation of strong T-cell immunity is one of the main challenges for the development of successful vaccines against cancer and major infectious diseases. To accomplish this task vaccine peptides must be protected from rapid degradation in the body and should be delivered to the center of the lymph node cells, thereby considerably increasing T-lymphocyte immune responses.

To fulfill these criteria, investigators at the University of Geneva (Switzerland) and collaborators from several German research institutes engineered spider silk microparticles as the basis for a delivery system for peptide-based vaccination. Spider silk is a lightweight, biocompatible, non-toxic material that is highly resistant to degradation from light and heat. To prepare the microparticles, the recombinant spider silk protein eADF4(C16) was fused to the antigenic peptide from ovalbumin, either without linker or with a cathepsin cleavable peptide linker.

The investigators reported in the July 2018 issue of the journal Biomaterials that particles prepared from the hybrid proteins were taken up by dendritic cells, which are essential for T-cell priming, and successfully activated cytotoxic T-cells, without signs of immunotoxicity or unspecific immunostimulatory activity. Upon subcutaneous injection in mice, the particles were taken up by dendritic cells and accumulated in the lymph nodes, where immune responses are generated.

"To develop immunotherapeutic drugs effective against cancer, it is essential to generate a significant response of T-lymphocytes, said senior author Dr. Carole Bourquin, professor of pharmaceutical sciences at the University of Geneva.

"As the current vaccines have only limited action on T-cells, it is crucial to develop other vaccination procedures to overcome this issue. Our study has proved the validity of our technique. We have demonstrated the effectiveness of a new vaccination strategy that is extremely stable, easy to manufacture and easily customizable."

Related Links:
University of Geneva

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.