We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Use of Nanoparticles Developed for Targeted Drug Delivery

By LabMedica International staff writers
Posted on 26 Jun 2018
Print article
Image: Extracellular vesicle-like metal-organic framework nanoparticles are developed for the intracellular delivery of biofunctional proteins. The biomimetic nanoplatform can protect the protein cargo and overcome various biological barriers to achieve systemic delivery and autonomous release (Photo courtesy of the Zheng Laboratory, Pennsylvania State University).
Image: Extracellular vesicle-like metal-organic framework nanoparticles are developed for the intracellular delivery of biofunctional proteins. The biomimetic nanoplatform can protect the protein cargo and overcome various biological barriers to achieve systemic delivery and autonomous release (Photo courtesy of the Zheng Laboratory, Pennsylvania State University).
The innovative use of metal-organic framework nanoparticles has enabled the development of a delivery system for therapeutic proteins that selectively targets tumor cells.

Metal-organic frameworks (MOFs) are a class of crystalline materials that consist of coordination bonds between transition-metal cations and multidentate organic linkers. MOFs are made by linking inorganic and organic units by strong bonds (reticular synthesis), and the structure of MOFs is characterized by an open framework that can be porous. MOFs are known for their extraordinarily high surface areas, tunable pore size, and adjustable internal surface properties. The flexibility with which the constituents’ geometry, size, and functionality can be varied has led to more than 20,000 different MOFs being reported and studied within the past decade.

Current strategies for transporting protein therapeutic agents face substantial challenges owing to various biological barriers, including susceptibility to protein degradation and denaturation, poor cellular uptake, and low transduction efficiency into the cytosol.

To counter these difficulties, investigators at Pennsylvania State University (State College, USA) developed a biomimetic nanoparticle platform for systemic and intracellular delivery of proteins. Using a biocompatible strategy, they caged guest proteins in the matrix of metal–organic frameworks with high efficiency (up to about 94%) and high loading content (the protein toxin gelonin at up to about 50 times those achieved by surface conjunction), and the nanoparticles were further decorated with tumor cell extracellular vesicle (EV) membranes with an efficiency as high as nearly 97%.

The nanoparticles, which were selectively transported to the tumor site due to the property of homotypic targeting engendered by the EV membrane coating, were taken up by the cancer cells through endocytosis. Once inside the cells, the higher acidity of the cancer cell’s intracellular transport vesicles degraded the MOF nanoparticles, which released the toxic protein into the cytosol and killed the cells.

Results of in vitro and in vivo studies published in the May 29, 2018, online edition of the Journal of the American Chemical Society revealed that the EV-like nanoparticles not only protected proteins against protease digestion and evaded immune system clearance but also selectively targeted homotypic tumor sites and promoted tumor cell uptake and autonomous release of the guest protein after internalization. Using this novel nanoparticle transport mechanism to deliver the bioactive therapeutic protein gelonin in a mouse model system significantly inhibited tumor growth and increased therapeutic efficacy14-fold.

“We designed a strategy to take advantage of the extracellular vesicles derived from tumor cells," said senior author Dr. Siyang Zheng, associate professor of biomedical and electrical engineering at Pennsylvania State University. "We remove 99% of the contents of these extracellular vesicles and then use the membrane to wrap our metal-organic framework nanoparticles. If we can get our extracellular vesicles from the patient, through biopsy or surgery, then the nanoparticles will seek out the tumor through a process called homotypic targeting. Our metal-organic framework has very high loading capacity, so we do not need to use a lot of the particles and that keeps the general toxicity low."

Related Links:
Pennsylvania State University

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Urine Analyzer
URIT-180
New
Celiac Disease Test
AESKULISA tTg-A New Generation

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.