We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cryo-EM Reveals How Malaria Parasites Invade Blood Cells

By LabMedica International staff writers
Posted on 09 Jul 2018
Print article
Image: A photomicrograph showing a malaria parasite (yellow) invading a red blood cell (red) (Photo courtesy of WEHI.TV/Walter and Eliza Hall Institute).
Image: A photomicrograph showing a malaria parasite (yellow) invading a red blood cell (red) (Photo courtesy of WEHI.TV/Walter and Eliza Hall Institute).
Results of cryo-electron microscopy (cryo-EM) studies revealed the molecular mechanism by which the Plasmodium vivax malaria parasite binds to and invades red blood cells in the human host.

Plasmodium vivax is a protozoal parasite and a human pathogen. This parasite is the most frequent and widely distributed cause of recurring malaria. P. vivax is one of the five species of malaria parasites that commonly infect humans. Although it is less virulent than Plasmodium falciparum, the deadliest of the five human malaria parasites, P. vivax malaria infections can lead to severe disease and death. P. vivax is believed to have originated in Asia and is found mainly in Asia and Latin America – where it accounts for 65% of malaria cases - and in some parts of Africa. However, latest studies have shown that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax, findings that indicate that human P. vivax is actually of African origin.

Cryo-EM is an analytical technique that provides near-atomic structural resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

Prior studies indicated that P. vivax used the human transferrin receptor 1 (TfR1) to gain access to red blood cells. TfR1-deficient erythroid cells were refractory to invasion by P. vivax, and anti-PvRBP2b (P. vivax reticulocyte-binding protein 2b) monoclonal antibodies inhibited reticulocyte binding and blocked P. vivax invasion in field isolates.

In a follow-up study, investigators at the Walter and Eliza Hall Institute (Melbourne, Australia) utilized high-resolution cryo-EM to establish the structure of a complex of PvRBP2b bound to human TfR1 and transferrin.

The investigators reported in the June 27, 2018, online edition of the journal Nature that PvRBP2b residues involved in the complex formation were conserved, suggesting that antigens could be designed that would act across P. vivax strains. Functional analyses of TfR1 highlighted how P. vivax hijacked TfR1, an essential housekeeping protein, by binding to sites that govern host specificity, without affecting its cellular function of transporting iron.

"We have now mapped, down to the atomic level, exactly how the parasite interacts with the human transferrin receptor," said Dr. Wai-Hong Tham, a laboratory head in the division of infection and immunity at the Walter and Eliza Hall Institute. "This is critical for taking our original finding to the next stage - developing potential new antimalarial drugs and vaccines. Cryo-EM is really opening doors for researchers to visualize structures that were previously too large and complex to "solve" before."

"It is basically a design challenge. P. vivax parasites are incredibly diverse - which is challenging for vaccine development. We have now identified the molecular machinery that would be the best target for an antimalarial vaccine effective against the widest range of P. vivax parasites," said Dr. Tham. "With this unprecedented level of detail, we can now begin to design new therapies that specifically target and disrupt the parasite's invasion machinery, preventing malaria parasites from hijacking human red blood cells to spread through the blood and, ultimately, be transmitted to others."

Related Links:
Walter and Eliza Hall Institute

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.