We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Researchers Identify Two Proteins Required to Reverse Senescence

By LabMedica International staff writers
Posted on 21 Aug 2018
Print article
Image: A micrograph showing cellular senescence in human cells (Photo courtesy of Eva Latorre, University of Exeter).
Image: A micrograph showing cellular senescence in human cells (Photo courtesy of Eva Latorre, University of Exeter).
Two protein-splicing factors have been identified that enable mitochondria-targeted hydrogen sulfide to reverse senescence in endothelial cells.

Senescent cells are aged or damaged cells that no longer are able to perform their normal roles. These cells interfere with the functioning of the tissue in which they accumulate, and eliminating them is considered to be a promising therapeutic approach. Hydrogen sulfide (H2S) has been found to alleviate senescence, but the pathways by which it accomplishes this are unclear.

To study these pathways, investigators at the University of Exeter (United Kingdom) assessed the effect of the H2S donor Na-GYY4137, and since mitochondria are a source and a target of H2S, three novel H2S donors, AP39, AP123, and RT01 previously demonstrated to be targeted specifically to the mitochondria, on splicing regulatory factor expression and cell senescence phenotypes in senescent primary human endothelial cells.

The investigators reported in the July 19, 2018, online edition of the journal Aging that H2S donors targeted to the mitochondria reversed senescence, but each demonstrated a very specific upregulation of transcripts encoding the splicing activator protein SRSF2 (Splicing factor, arginine/serine-rich 2) and the splicing inhibitor protein HNRNPD (Heterogeneous nuclear ribonucleoprotein D0). Abolition of either SRSF2 or HNRNPD expression in primary endothelial cells in the absence of any other treatment resulted in increased levels of cellular senescence. None of the H2S donors were able to reduce senescent cell load in cells in which SRSF2 or HNRNPD expression had been abrogated.

These results indicated that mitochondria-targeted H2S was capable of rescuing senescence phenotypes in endothelial cells through mechanisms that specifically involved SRSF2 and HNRNPD.

"As human bodies age, they accumulate old (senescent) cells that do not function as well as younger cells," said senior author Dr. Lorna Harries, associate professor of molecular genetics at the University of Exeter. "This is not just an effect of ageing – it is a reason why we age. We used to think age-related diseases like cancer, dementia, and diabetes each had a unique cause, but they actually track back to one or two common mechanisms. This research focuses on one of these mechanisms, and the findings with our compounds have potentially opened up the way for new therapeutic approaches in the future."

Related Links:
University of Exeter

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test
New
PSA Test
Human Semen Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.