We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Electron Microscopy Technique Boosts Development of Antibody-Based Vaccines

By LabMedica International staff writers
Posted on 22 Aug 2018
Print article
Image: With the new method, the researchers were able to image polyclonal antibody/HIV envelope complexes at a resolution of 4.7 angstroms. At this resolution, the researchers discovered that in rabbits, antibodies specific to a vulnerable site on HIV\'s outer glycan layer (blue shapes) are structurally highly convergent and closely resemble a previously isolated monoclonal antibody (green and teal ribbons) (Photo courtesy of Dr. Lars Hangartner, Scripps Research Institute).
Image: With the new method, the researchers were able to image polyclonal antibody/HIV envelope complexes at a resolution of 4.7 angstroms. At this resolution, the researchers discovered that in rabbits, antibodies specific to a vulnerable site on HIV\'s outer glycan layer (blue shapes) are structurally highly convergent and closely resemble a previously isolated monoclonal antibody (green and teal ribbons) (Photo courtesy of Dr. Lars Hangartner, Scripps Research Institute).
The novel use of an electron microscope imagining technique enabled vaccine developers to follow the design process of structure-based vaccines in real time.

Characterizing polyclonal antibody responses via currently available methods is inherently complex and difficult. Mapping epitopes in an immune response is typically incomplete, which creates a barrier to fully understanding the humoral response to antigens and hinders rational vaccine design efforts.

To improve the antibody design process, investigators at the Scripps Research Institute (La Jolla, CA, USA) developed a method for characterizing polyclonal responses by using electron microscopy to produce negatively stained images of viruses bound to potential neutralizing antibodies. They applied this method to the immunization of rabbits with an HIV-1 envelope glycoprotein vaccine candidate, BG505 SOSIP.664.

The investigators reported in the August 7, 2018, online edition of the journal Immunity that they detected known epitopes within the polyclonal sera and revealed how antibody responses evolved during the prime-boosting strategy to ultimately result in a neutralizing antibody response. They uncovered previously unidentified epitopes, including an epitope proximal to one recognized by human broadly neutralizing antibodies as well as potentially distracting non-neutralizing epitopes.

High-resolution, three-dimensional images of the antibodies with their viral targets were obtained using cryo-electron microscopy (cryo-EM). Cryo-EM is an analytical technique that provides near-atomic structural resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

"We can now watch antibody responses evolve almost in real time," said senior author Dr. Lars Hangartner, associate professor at the Scripps Research Institute. "This method has the potential to change the pace at which we can develop vaccines."

Related Links:
Scripps Research Institute

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Auto-Chemistry Analyzer
CS-1200
New
Tabletop Centrifuge
Mikro 185

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.