We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blocking Glucose Metabolism Prevents Development of Metabolic Syndrome

By LabMedica International staff writers
Posted on 03 Sep 2018
Print article
Image: Mice fed a diet high in trans fats and cholesterol for 12 weeks show fatty deposits in the liver (red staining) (Photo courtesy of Dr. Brian DeBosch, Washington University School of Medicine).
Image: Mice fed a diet high in trans fats and cholesterol for 12 weeks show fatty deposits in the liver (red staining) (Photo courtesy of Dr. Brian DeBosch, Washington University School of Medicine).
A novel approach to preventing diabetes and other manifestations of metabolic syndrome, which includes obesity, diabetes, and fatty liver disease, showed promising results in mouse model systems.

The response by the liver to fasting has been proposed as a therapeutic pathway to enhance hepatic and whole-host metabolism. However, the mechanisms underlying these metabolic effects remain unclear.

To help explain these mechanisms, investigators at Washington University School of Medicine (St. Louis, MO, USA) worked with various mouse models to evaluate the role of the enzyme epidermal-type lipoxygenase, eLOX3 (encoded by its gene, Aloxe3), as a potentially novel promotor of the therapeutic fasting response.

The investigators reported in the August 23, 2018, online edition of the journal JCI Insight that Aloxe3 was activated during fasting, glucose withdrawal, or trehalose/trehalose analogue treatment. Aloxe3 in the liver - whether activated by fasting or trehalose - improved the animals' insulin sensitivity as well as increasing calorie burning, raising body temperature, reducing weight gain and fat accumulation, and reducing levels of circulating fats and cholesterol in the blood.

In addition, administration of trehalose in the drinking water of mice fed an obesity-inducing diet protected the animals from developing metabolic disease. Although use of trehalose as a drug in humans is unlikely due to the ease in which it is broken down in the body, trehalose analogues such as lactotrehalose were found to demonstrate similar beneficial effects by activating Aloxe3 while not being as readily denatured.

"We learned that this gene, Aloxe3, improves insulin sensitivity in the same way that common diabetes drugs -- called thiazolidinediones -- improve insulin sensitivity," said senior author Dr. Brian DeBosch, assistant professor of pediatrics at Washington University School of Medicine. "And we showed that Aloxe3 activation in the liver is triggered by both trehalose and by fasting, possibly for the same reason: depriving the liver of glucose. In mice, this gene is turned on as part of what seems to be the normal fasting response. Our data suggest that fasting -- or giving trehalose with a normal diet -- triggers the liver to change the way it processes nutrients, in a beneficial way. And if glucose can be blocked from the liver with a drug, it may be possible to reap the benefits of fasting without strictly limiting food."

Related Links:
Washington University School of Medicine

New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.