We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nucleic Acid Therapy Effective in Inflammatory Bowel Disease Model

By LabMedica International staff writers
Posted on 06 Sep 2018
Print article
Image: The role of miRNAs in inflammatory bowel disease (IBD): miR-29 loaded on a supercarbonate apatite prevented the development of inflammation by suppressing the production of inflammatory cytokines (IL-6, TGF-beta, and IL-23) secreted from dendritic cells and by suppressing the differentiation of naive T-cells to Th17 cells (Photo courtesy of Osaka University).
Image: The role of miRNAs in inflammatory bowel disease (IBD): miR-29 loaded on a supercarbonate apatite prevented the development of inflammation by suppressing the production of inflammatory cytokines (IL-6, TGF-beta, and IL-23) secreted from dendritic cells and by suppressing the differentiation of naive T-cells to Th17 cells (Photo courtesy of Osaka University).
A team of Japanese researchers working with a mouse model recently described a novel method for using microRNAs to treat inflammatory bowel disease (IBD).

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.

Several miRNAs had been shown earlier to suppress the production of inflammatory cytokines such as TNF-alpha and interleukin-6 (IL6) that cause symptoms of IBD. However, there has not been an efficient method available for delivering miRNAs to the affected area.

Investigators at Osaka University (Japan) had been using a mouse model system to search for a means of delivering targeted doses of therapeutic miRNAs to the inflamed gut region. In this regard, they described the use of microRNA-29 (miR-29) and a supercarbonate apatite (sCA) nanoparticle as a drug delivery system in the September 7, 2018, issue of the journal Molecular Therapy-Nucleic Acids.

The investigators reported that injection of sCA-miR-29a-3p or sCA-miR-29b-3p into mouse tail veins markedly prevented inflammation caused by dextran sulfate sodium (DSS)-induced colitis. RNA sequencing analysis revealed that miR-29a and miR-29b could inhibit the interferon-associated inflammatory cascade. Subcutaneous injection of sCA-miR-29b also potently inhibited inflammation, and it efficiently targeted CD11c+ dendritic cells (DCs) among various types of immune cells in the inflamed mucosa. RT-PCR analysis indicated that the miR-29 RNAs in CD11c+ DCs suppressed the production of interleukin-6 (IL-6), transforming growth factor beta (TGF-beta), and IL-23 subunits in DSS-treated mice.

Although only modest amounts of miRNA were delivered to the inflamed colonic mucosa, the sCA-miRNA complex was preferentially captured by CD11c+ tissue dendritic cells in the colon, and this caused a molecular modulation that inhibited maturation toward pathogenic T-cells. This feature of sCA may be particularly useful for efficient therapy of IBD, in which dendritic cells play a central role.

"Our technique to deliver miRNAs to DCs - major players in immune responses - will shape the future of medical care. sCA can be used to treat a wide range of immunity and allergic disorders caused by immune responses. The results of our study will lead to the development of new drugs for treating these disorders," said senior author Dr. Hirofumi Yamamoto, professor of molecular pathology and gastroenterological surgery at Osaka University.

Related Links:
Osaka University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.