We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Caspase-2 Drives Progression of Fatty Liver Disease

By LabMedica International staff writers
Posted on 25 Sep 2018
Print article
Image: A photomicrograph of a fibrotic liver section revealed by staining of collagen accumulation in a mouse with human-like NASH (Photo courtesy of the University of California, San Diego).
Image: A photomicrograph of a fibrotic liver section revealed by staining of collagen accumulation in a mouse with human-like NASH (Photo courtesy of the University of California, San Diego).
The enzyme caspase-2 has been shown to be critically linked to the progression of nonalcoholic fatty liver disease (NAFLD) to the more serious and aggressive nonalcoholic steatohepatitis (NASH) form of the syndrome.

NASH is the most aggressive form of non-alcoholic fatty liver disease, which includes a spectrum of chronic liver diseases and has become a leading cause of liver transplants. NAFLD progresses to NASH in response to elevated endoplasmic reticulum (ER) stress. While the onset of simple steatosis requires elevated de novo synthesis of lipids, progression to NASH is triggered by accumulation of hepatocyte-free cholesterol.

Investigators at the University of California San Diego (USA) reported in the September 13, 2018, online edition of the journal Cell that caspase-2, whose expression was found to be ER-stress inducible and elevated in human and mouse NASH, controlled the buildup of hepatic-free cholesterol and triglycerides by activating sterol regulatory element-binding proteins (SREBP).

Caspase-2 co-localized with site 1 protease (S1P) and cleaved it to generate a soluble active fragment that initiated SCAP (SREBP cleavage-activating protein)-independent SREBP1/2 activation in the ER. Elimination of caspase-2 or its pharmacological inhibition prevented diet-induced steatosis and NASH progression in ER-stress-prone mice.

"In NASH-free individuals, the activities of SREBP1 and SREBP2 are kept under control, which is essential for preventing excessive lipid accumulation in the liver," said senior author Dr. Michael Karin, professor of pharmacology at the University of California, San Diego. "However, in NASH patients, something goes awry and the liver continues to turn out excess amounts of triglycerides and cholesterol. This correlates with elevated SREBP1 and SREBP2 activities and increased caspase-2 expression. Our results show that caspase-2 is a critical mediator of NASH pathogenesis, not only in mice but probably in humans as well. While explaining how NASH is initiated, our findings also offer a simple and effective way to treat or prevent this devastating disease."

Related Links:
University of California San Diego

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
H.pylori Test
Humasis H.pylori Card

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.