We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Functional 3D Neural Network Models Generated from Stem Cells

By LabMedica International staff writers
Posted on 01 Nov 2018
Print article
Image: Confocal image of fluorescent markers indicating presence of neurons (green), astrocytes (red) and the silk protein-collagen matrix (blue). Image field is 460 microns (Photo courtesy of Tufts University).
Image: Confocal image of fluorescent markers indicating presence of neurons (green), astrocytes (red) and the silk protein-collagen matrix (blue). Image field is 460 microns (Photo courtesy of Tufts University).
A team of biomedical engineers worked with human induced pluripotent stem cells (iPSCs) to develop three-dimensional (3D) in vitro human neural network model systems.

Three-dimensional in vitro cell and tissue culture models allow for the exploration of mechanisms of organ development, cellular interactions, and disease progression within defined environments. Investigators at Tufts University (Boston, MA, USA) used iPSCs from normal and diseased individuals to populate a three-dimensional matrix of silk protein and collagen to create such models, which would mimic structural and functional features of the brain and demonstrate neural activity.

The current work was based on previous studies where primary rodent neurons were successfully grown in a similar three-dimensional system. The model was adapted to human induced pluripotent stem cells, allowing for a more direct exploration of the human condition.

The investigators reported in the October 1, 2018, online edition of the journal ACS Biomaterials Science & Engineering that these tissue cultures comprised diverse cell populations, including neurons and astroglial cells, interacting in three-dimensions and exhibited spontaneous neural activity confirmed through electrophysiological recordings and calcium imaging over at least nine months. Compared to growing and culturing cells in two dimensions, the three-dimensional matrix produced a significantly more complete mix of cells found in neural tissue, with the appropriate morphology and expression of receptors and neurotransmitters.

This approach, which was tested with stem cells derived from healthy individuals as well as from Alzheimer’s and Parkinson’s disease patients, allowed for the direct integration of pluripotent stem cells into the three-dimensional construct, bypassing early neural differentiation steps. This streamlined process, in combination with the longevity of the cultures, provided a system that could be manipulated to support a variety of experimental applications such as investigating drug targets in neurodegenerative diseases.

"We found the right conditions to get the iPSCs to differentiate into a number of different neural subtypes, as well as astrocytes that support the growing neural networks," said senior author Dr. David L. Kaplan, professor of biomedical engineering at Tufts University. "The silk-collagen scaffolds provide the right environment to produce cells with the genetic signatures and electrical signaling found in native neuronal tissues."

Related Links:
Tufts University

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Newborn Screening Test
NeoMass AAAC 3.0

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.