We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mechanism Explains Why Damaged DNA Accumulates in ALS Neurons

By LabMedica International staff writers
Posted on 13 Nov 2018
Print article
Image: Identification of a link between motor neurons\' inability to repair oxidative genome damage in ALS suggests that DNA ligase-targeted therapies may prevent or delay disease progression (Photo courtesy of Hegde Laboratory, Houston Methodist Hospital).
Image: Identification of a link between motor neurons\' inability to repair oxidative genome damage in ALS suggests that DNA ligase-targeted therapies may prevent or delay disease progression (Photo courtesy of Hegde Laboratory, Houston Methodist Hospital).
A team of neurodegenerative disease researchers identified a mechanism that leads to the accumulation of damaged DNA in neurons that characterizes amyotrophic lateral sclerosis (ALS).

ALS is a neurodegenerative disease characterized by the selective and progressive death of upper and lower motor neurons. This leads to progressive muscle weakness, and death of the patient usually occurs within two to five years after the onset of symptoms. In approximately 10% of patients, there is a clear family history.

Genome damage and defective repair have been linked to neurodegeneration in conditions such as ALS. However, the specific mechanisms involved remain unclear. In this regards, investigators at Houston Methodist Hospital (TX, USA) identified defects - caused by mutations in the RNA/DNA-binding protein FUS - in DNA nick ligation and oxidative damage repair in a subset of ALS patients.

FUS rapidly appears at sites of DNA damage, which suggests that it is orchestrating the DNA repair response. The function of FUS in the DNA damage response in neurons involves a direct interaction with histone deacetylase 1 (HDAC1). The recruitment of FUS to double-strand break sites is important for DNA damage response signaling and for repair of DNA damage. FUS loss-of-function results in increased DNA damage in neurons. Mutations in the FUS nuclear localization sequence impair the poly (ADP-ribose) polymerase (PARP)-dependent DNA damage response. This impairment leads to neurodegeneration and FUS aggregate formation. Such FUS aggregates are a pathological hallmark of ALS.

The investigators examined the connection between FUS function and DNA ligation defects in multiple model systems, including CRISPR/Cas9-mediated FUS knockout (KO) cells, familial ALS patient-derived induced pluripotent stem cells (iPSCs) with FUS mutations, motor neurons differentiated from these patient-derived iPSCs, and spinal cord tissue with FUS pathology from ALS patients.

Result published in the September 11, 2018, online edition of the journal Nature Communications revealed that loss of nuclear FUS caused DNA nick ligation defects in motor neurons due to reduced recruitment to DNA strand breaks of the XRCC1/LigIII enzyme complex. DNA ligation defects in ALS patient-derived iPSC lines carrying FUS mutations and in motor neurons generated therefrom were rescued by CRISPR/Cas9-mediated correction of the mutation.

These findings revealed a pathway of defective DNA ligation in FUS-linked ALS and suggested that LigIII-targeted therapies could prevent or delay progression of the disease.

Related Links:
Houston Methodist Hospital

Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Newborn Screening Test
NeoMass AAAC 3.0
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.