Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biodegradable Nanoscaffolds Improve Chances for Stem Cell Therapies

By LabMedica International staff writers
Posted on 15 Nov 2018
The therapeutic potential of biodegradable nanoscaffolds made from manganese dioxide (MnO2) for advanced stem cell transplantation and neural tissue engineering was discussed favorably in a recent paper.

Stem cell transplantation, as a promising treatment for central nervous system diseases, has been hampered by crucial issues such as a low cell survival rate, incomplete differentiation, and limited neurite outgrowth in vivo. Inorganic and carbon-based nanoscaffolds designed to support and improve stem cell growth have been handicapped by their non-biodegradability and restricted biocompatibility, thereby delaying their wide clinical applications. On the contrary, MnO2 nanomaterials have proven to be biodegradable in other bio-applications such as cancer therapies, with MRI active Mn2+ ions as a degradation product.

Investigators at Rutgers University (New Brunswick, NJ, USA) designed nanoscaffolds that mimicked the natural tissue microenvironment to deliver physical and soluble cues. They took advantage of the biodegradability of MnO2 to incorporate its unique physiochemical properties into nano-sized structures for stem cell-based tissue engineering. The result, as described in the August 8, 2018, online edition of the journal Nature Communications was MnO2 nanomaterials-based three-dimensional hybrid nanoscaffolds that better regulated stem cell adhesion, differentiation into neurons, and neurite outgrowth in vitro and enabled enhanced stem cell transplantation benefits in vivo.

These biodegradable MnO2 nanoscaffolds could potentially serve as powerful tools for improving stem cell transplantation and advancing stem cell therapy.

"It has been a major challenge to develop a reliable therapeutic method for treating central nervous system diseases and injuries," said senior author Dr. KiBum Lee, professor of chemistry and chemical biology at Rutgers University. "Our enhanced stem cell transplantation approach is an innovative potential solution."

Related Links:
Rutgers University


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.