We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Protein Crystals Used to Prepare Cellular Drug Delivery Nanotubes

By LabMedica International staff writers
Posted on 28 Nov 2018
Print article
Image: The method for assembly of protein nanotubes involved a four-step process: 1) introduction of cysteine residues into the wild-type protein; 2) crystallization of the engineered protein into a lattice structure; 3) formation of a cross-linked crystal; and 4) dissolution of the scaffold to release the protein nanotubes (Photo courtesy of Chemical Science).
Image: The method for assembly of protein nanotubes involved a four-step process: 1) introduction of cysteine residues into the wild-type protein; 2) crystallization of the engineered protein into a lattice structure; 3) formation of a cross-linked crystal; and 4) dissolution of the scaffold to release the protein nanotubes (Photo courtesy of Chemical Science).
A team of Japanese biomolecular engineers used scaffolds of cross-linked protein crystals to prepare nanotubes, which are structures that can serve as the basis for minute delivery systems for drugs and other substances.

Investigators at the Tokyo Institute of Technology (Japan) reported in the October 30, 2018, online edition of the journal Chemical Science that they had developed a new method for preparing nano-size structures using protein crystals as non-equilibrium molecular scaffolds. Protein crystals were found to provide an ideal environment with a highly ordered packing of subunits in which the supramolecular assembled structures formed in the crystalline matrix.

The investigators used the protein RubisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase) as the building block for construction of the nanotubes. This protein was selected for its high stability, which enabled it to retain its shape and crystal structure.

As described, the method comprised four steps: (1) Preparation of an engineered protein; (2) formation of the protein crystal scaffold; (3) formation of a cross-linked crystal; (4) release of the protein nanotubes by dissolving the scaffold. The assembly of tubes was driven by the formation of disulfide bonds to retain the intermolecular interactions within each assembly in the crystalline matrix after dissolution of the crystals. Transmission electron microscopy (TEM) was used to confirm the formation of the protein nanotubes.

"Our cross-linking method can facilitate the formation of the crystal scaffold efficiently at the desired position (specific cysteine sites) within each tube of the crystal," said senior author Dr. Takafumi Ueno, professor of biomolecular engineering at the Tokyo Institute of Technology. "At present, since more than 100,000 protein crystal structures have been deposited in protein data bank, our method can be applied to other protein crystals for construction of supramolecular protein assemblies, such as cages, tubes, sheets."

Related Links:
Tokyo Institute of Technology

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.